荒漠植物霸王(Zygophyllum xanthoxylum)不同大小叶片C、N、P化学计量特征
收稿日期: 2012-11-27
修回日期: 2013-01-20
网络出版日期: 2013-01-20
Stoichiometric Traits of C, N, P of Leaves in Desert Shrub Zygophyllum xanthoxylum
Received date: 2012-11-27
Revised date: 2013-01-20
Online published: 2013-01-20
对荒漠植物霸王(Zygophyllum xanthoxylum)不同大小叶片的碳(C)、氮(N)、磷(P)化学计量比特征进行了研究。结果表明:随着单叶重量(ILM)、单叶面积(ILA)和比叶面积重量(LMA)的增加,叶片C、N、P含量迅速降低后趋于稳定,叶片C∶N和C∶P值均逐渐增大,而叶片N∶P值则先升高后逐渐趋于稳定。本研究采集叶片单叶重量变异系数为55.44%,而叶片C、N、P含量及C∶N、C∶P和N:P值变异系数均小于25%,其大小排序为:P(22.6%)>N(15.21%)>N∶P(14.67%)>C∶P(13.30%)>C(12.18%)>C∶N(8.81%)。
牛得草1 , 陈鸿洋1 , 江世高1 , 常佩静2 , 傅 华1 . 荒漠植物霸王(Zygophyllum xanthoxylum)不同大小叶片C、N、P化学计量特征[J]. 中国沙漠, 2013 , 33(3) : 703 -709 . DOI: 10.7522/j.issn.1000-694X.2013.00101
Stoichiometric traits of C, N, P for desert shrub Zygophyllum xanthoxylum leaves with changes in leaf size were observed. The results showed that with the values of individual leaf mass (ILM), individual leaf area (ILA) and leaf mass per area (LMA) increasing, leaf C, N and P contents decreased rapidly and then tended to be stable, while both leaf C∶N and C∶P increased gradually, N∶P increased firstly and then tended to be stable. In our study, the coefficient of variation(CV) for individual leaf mass was 55.44%, while the CV for leaf C, N and P content, C∶N, C∶P and N∶P were less than 25%, and the order was: P(22.6%)>N(15.21%)>N∶P(14.67%)>C∶P(13.30%)>C(12.18%)>C∶N(8.81%).
Key words: Zygophyllum xanthoxylum; leaf size; ecological stoichiometry
[1]Sterner R W,Elser J J.Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere[M].Princeton N J.USA:Princeton University Press,2002:1-20.
[2]韩文轩,吴漪,汤璐瑛,等.北京及周边地区植物叶的碳氮磷元素计量特征[J].北京大学学报(自然科学版),2008,(4):67-72.
[3]杨雪,李奇,王绍美,等.两种白刺叶片及沙堆土壤化学计量学特征的比较[J].中国沙漠,2011,31(5):1156-1161.
[4]毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
[5]Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428:821-827.
[6]Han W X,Fang J Y,Guo D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385.
[7]Kerkhoff A J,Enquist B J,Elser J J,et al.Plant allometry,stoichiometry and the temperature-dependence of primary productivity[J].Global Ecology and Biogeography,2005,14(6):585-598.
[8]Wright I J,Reich P B,Cornelissen J H C,et al.Assessing the generality of global leaf trait relationships[J]. New Phytologist,2005,166(2):485-496.
[9]He J S,Fang J Y,Wang Z H,et al.Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J].Oecologia,2006,149(1):115-122.
[10]李玉霖,毛伟,赵学勇,等.北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J].环境科学,2010,31(8):1716-1725.
[11]Pei S F,Fu H,Wan C G,et al.Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe,Inner Mongolia[J].Arid Land Research and Management,2006,20:161-175.
[12]郭丁,裴世芳,俞斌华,等.阿拉善荒漠草地几种灌木对土壤有效态养分的影响[J].中国沙漠,2009,29(1):95-100.
[13]Kuo S. Methods of Soil Analysis.Part 3,Chemical Methods[M].MadisonUSA:Soil Science Society of America,American Society of Agronomy,1996:869-919.
[14]刘广全,赵士洞,王浩,等.锐齿栎林个体光合器官生长与营养季节动态[J].生态学报,2001(6),21: 883-889.
[15]陈阅增.普通生物学——生命科学通论[M].北京:高等教育出版社,1997:99-106.
[16]Elser J J,Sterner R W,Gorokhova E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550.
[17]Koojiman S.The stoichiometry of animal energetics[J].Journal of Theoretical Biology,1995,177(2):139-149.
[18]张文彦,樊江文,钟华平,等.中国典型草原优势植物功能群氮磷化学计量学特征研究[J].草地学报,2010,18(4):503-509.
/
〈 |
|
〉 |