腾格里沙漠南缘植被恢复过程中土壤理化性状的变化
收稿日期: 2012-11-19
修回日期: 2012-12-11
网络出版日期: 2012-12-11
Change of Soil Properties with the Restoration of Vegetation in the South Fringe of the Tengger Desert
Received date: 2012-11-19
Revised date: 2012-12-11
Online published: 2012-12-11
土壤有机碳是土壤质量的关键指标,也是评估陆地生态系统碳库对大气CO2源、汇效应转变的基础。本文分析了腾格里沙漠南缘植被恢复过程中土壤物理性质、有机碳含量及其组分特征。结果表明:在围封后,土壤容重随着植被恢复年限的延长呈指数级减小,孔隙度、黏粒含量和田间持水量则表现出随年限延长而显著增大的趋势;土壤有机碳、微生物量碳、轻组有机碳和重组有机碳含量随着围封抚育年限的延长而显著增加,轻组有机碳占总有机碳的比例随植被恢复年限的延长而增大,而重组碳所占比例则随时间变化显著下降。土壤有机碳与容重呈显著负相关,而与其他参数呈显著正相关,说明其变化受多种因素影响,且对土壤物理性质的变化有重要意义。
田 青1 , 王建兵2 , 张德罡2 , 王理德3 . 腾格里沙漠南缘植被恢复过程中土壤理化性状的变化[J]. 中国沙漠, 2013 , 33(3) : 772 -776 . DOI: 10.7522/j.issn.1000-694X.2013.00111
Soil organic carbon (SOC) is a key index of soil quality, and it is the basis for the appraisal of role transition of the terrestrial carbon pool between atmospheric carbon dioxide source and sink. The dynamics of bulk density, porosity, silt content, water-holding capacity, soil organic carbon content, light fraction carbon (LF-C) content, heavy fraction carbon (HF-C) content as well as microbial biomass carbon (MBC) content with the restoration of vegetation were investigated, the results showed that: bulk density exponentially decreased with the time extended after being exclosed, while porosity, silt content and water-holding capacity increased with vegetation restoration. Content of SOC, MBC, LF-C, HF-C showed a significant increase with the prolongation of time. The proportion of LF-C increased while the proportion of HF-C deceased gradually after the exclosure. SOC was negatively correlated with bulk density, while positive correlations were found between SOC and other parameters, which suggest the dynamics of SOC is affected by multiple factors.
Key words: steppified desert; soil properties; exclosure; Tengger Desert
[1]周广胜,王玉辉.全球生态学[M].北京:高等教育出版社,2003:200-204.
[2]Bruce J P,Frome M,Haite E,et al.Carbon sequestration in soils[J].Journal of Soil and Water Conservation,1999,54:382-389.
[3]Zhang J B,Song C C,Wang S M.Dynamics of soil organic carbon and its fractions after abandonment of cultivated wetlands in northeast China[J].Soil and Tillage Research,2007,96(1/2):350-360.
[4]Bernoux M,Conceio M D,Carvalho S,et al.CO2 emission from mineral soils following land-cover change in Barzil[J].Global Change Biology,2001,7(7):779-787.
[5]Lal R.Soil carbon dynamics in cropland and rangeland [J].Environmental Pollution,2002,116(3):353-362.
[6]Schlesinger W H.Biogeochemistry:An Analysis of Global Change[M].San Diego:Academic Press,1991.
[7]Lal R.Carbon sequestration in dryland ecosystems[J].Environment Management,2004,33(4):528-544.
[8]崔永琴,马剑英,刘小宁,等.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠,2011,31(2): 407-414.
[9]刘纪远,王绍强,陈镜明,等.1999-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,2004,59(4):483-496.
[10]许文强,陈曦,罗格平,等.土壤碳循环研究进展及干旱区碳循环研究展望[J].干旱区地理,2011,34(4):614-620.
[11]贾晓红,李新荣,李元寿.干旱沙区植被恢复中土壤碳氮变化规律[J].植物生态学报,2007,31(1):66-74.
[12]阿穆拉,赵萌萌,韩国栋,等.放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响[J].中国草地学报,2011,33(3):115-118.
[13]程淑兰,欧阳华,牛海山,等.荒漠化逆转地区耕层土壤有机碳时空动态研究[J].兰州大学学报(自然科学版),2004,40(6):96-100.
[14]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
[15]杨昊天,刘立超,高艳红,等.腾格里沙漠沙丘固定后土壤的斥水性特征研究[J].中国沙漠,2012,32(3):674-682.
[16]刘艳梅,李新荣,何明珠,等.生物土壤结皮对土壤微生物量碳的影响[J].中国沙漠,2012,32(3):669-673.
[17]李小军,汪君,高永平.荒漠化草原植被斑块分布对地表径流、侵蚀及养分流失的影响[J].中国沙漠,2011,31(5):1112-1118.
[18]贾夏,韩士杰,赵永华,等.CO2干扰对红松和长白赤松幼苗土壤微生物量C的影响[J].西北林学院学报,2006,21(5):43-46.
[19]华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993:39-40.
[20]杨长明,欧阳竹,杨林章,等.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,2006,26(12):4148-4155.
[21]Vance E D,Brookes P C,Jenkinson D S.An extraction method formeasuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19:703-707.
[22]鲁如坤.土壤和农业化学分析方法[M].北京:农业出版社,1999.
[23]李守中,肖洪浪,宋耀选,等.腾格里沙漠人工固沙植被区生物土壤结皮对降水的拦截作用[J].中国沙漠,2002,22(6):612-616.
[24]周广胜,王玉辉,延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
/
〈 |
|
〉 |