img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

腾格里沙漠东南部野外风沙流观测

  • 张正偲 ,
  • 董治宝
展开
  • 中国科学院寒区旱区环境与工程研究所 沙漠与沙漠化重点实验室, 甘肃 兰州 730000

收稿日期: 2012-09-22

  修回日期: 2012-11-15

  网络出版日期: 2012-11-15

Field Observation of Aeolian Sediment Flux in the Southeast Tengger Desert

  • ZHANG Zheng-cai ,
  • DONG Zhi-bao
Expand
  • Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2012-09-22

  Revised date: 2012-11-15

  Online published: 2012-11-15

摘要

风沙流是一种沙粒的群体运动,是风沙物理研究的重要内容之一。开展风沙流研究,能够为风沙运动理论与工程实践提供理论支持。由于自然界风的阵性、地表湿度、下垫面属性和风程长度等影响因子的时空变化对风沙流运动的影响,以及长期野外观测的限制,对风沙流的研究目前还不是很完善。本文依据中国科学院风沙科学观测场2005—2009年的长期观测资料,采用赤池信息量准则(Akaike information criterion),对5种风沙流通量研究常用的拟合模型进行对比分析。结果表明,指数函数模型(q(z)=ae-z/b)是平坦沙地上风沙流的最佳表示方式,该模型拟合系数a值在0~600之间,但主要分布在0~100之间,占64.40%,其次为100~150之间,占18.24%;系数b值在0~0.06之间,主要分布在0.015~0.040之间,占91.21%,其中0.025~0.030占26.37%,其次为0.030~0.035,占24.40%。风沙流中的沙粒平均跃移高度与拟合系数b相同。风沙流在运动过程中,主要在高度20 cm以下传输。风沙流对地表的风蚀和堆积机率几乎是相等的。

本文引用格式

张正偲 , 董治宝 . 腾格里沙漠东南部野外风沙流观测[J]. 中国沙漠, 2013 , 33(4) : 973 -980 . DOI: 10.7522/j.issn.1000-694X.2013.00089

Abstract

Aeolian sediment flux is one of the important issues in aeolian physics, which can provide theory information on aeolian research and aeolian engineering. Because of temporal and spatial change in aeolian sediment process and long time field observation limitations, there are some dispute in aeolian sediment flux research. Based on long time field observation data and Akaike information criterion, the best mathematical model of aeolian sediment flux was built. The exponential model q(z)=ae-z/b can be used to express aeolian sediment flux, the coefficient a was between 0 and 600, but mostly distributed between 0 and 100, occupied about 64.40% of total frequency, and then between 100 and 150, occupied about 18.24% of total frequency. The coefficient b was between 0 and 0.06, but mostly distributed between 0.015 and 0.035, occupied about 91.21% of total frequency. The average saltation height was the same as coefficient b. Aeolian sediment transported mostly at height of 0-20 cm, and the opportunity of erosion to surface and deposition over surface was almost equal.

参考文献

[1]Dong Z B,Liu X P,Wang H T,et al.The flux profile of a blowing sand cloud:a wind tunnel investigation[J].Geomorphology,2002,49:219-230.

[2]Zheng X J,He L,Wu J J.Vertical profiles of mass flux for windblown sand movement at steady state [J]. Journal of Geophysical Research,2004,109:B01106.

[3]Anderson R S,Haff P K.Simulation of aeolian saltation[J].Science,1988,241:820-829.

[4]Dong Z B,Lu J F,Man D Q,et al.Equations for the near-surface mass flux density profile of wind-blown sediments[J].Earth Surface Processes and Landforms,2011,36(10):1292-1299.

[5]吴晓旭,邹学勇,王仁德,等.毛乌素沙地不同下垫面的风沙运动特征[J].中国沙漠,2011,31(4):828-835.

[6]张伟民,王涛,汪万福,等.复杂风况条件下戈壁输沙量变化规律的研究[J].中国沙漠,2011,31(3):543-549.

[7]何清,杨兴华,艾力·买买提明,等.塔克拉玛干沙漠风蚀起沙观测研究——试验介绍与观测结果初报[J].中国沙漠,2011,31(2):315-322.

[8]张正偲,董治宝,赵爱国,等.输沙量与输沙势的关系[J].中国沙漠,2011,31(4):824-827.

[9]杜鹤强,韩致文,王涛,等.新月形沙丘表面风速廓线与风沙流结构变异研究[J].中国沙漠,2012,32(1):9-16.

[10]杜鹤强,韩致文,邓晓红,等.基于GIS空间分析技术的新月形沙丘表面输沙率模型研究[J].中国沙漠,2011,31(4):815-823.

[11]Zingg A W.Some characteristics of Aeolian sand movement by saltation process [J].Edition du Centre National de la Recherche Scientifique,1953,7:197-208.

[12]Chepil W S,Woodruff N P.Sedimentary characteristics of dust storms:Ⅱ.visibility and dust concentration[J].American Journal of Science,1957,255:104-114.

[13]Rasmussen K R,Mikkelsen H E.On the efficiency of vertical array aeolian field traps[J].Sedimentology,1998,45:789-800.

[14]Ni J R,Li Z S,Mendoza C.Vertical profiles of aeolian sand mass flux[J].Geomorphology,2002,49:205-218.

[15]Namikas S L.Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach[J].Sedimentology,2003,50:303-326.

[16]张正偲,董治宝,赵爱国.人工模拟戈壁风沙流与风程效应观测[J].中国科学:地球科学,2011,41(10):1505-1510.

[17]Anderson R S,Hallet B.Sediment transport by wind:toward a general model[J].Geological Society of America Bulletin,1986,97:523-535.

[18]Fryrear D W,Saleh A.Field wind erosion:vertical distribution[J].Soil Science,1993,155(4):294-300.

[19]Bauer B O,Houser C A,Nickling W G.Analysis of velocity profile measurements from wind-tunnel experiments with saltation[J].Geomorphology,2004,59:81-98.

[20]哈斯.腾格里沙漠东南缘沙丘表面风沙流结构变异的初步研究[J].科学通报,2004,49(11):1099-1104.

[21]倪晋仁,李振山.挟沙气流中输沙量垂线分布的实验研究[J].泥沙研究,2002,(1):30-35.

[22]Sterk G,Raats P A C.Comparison of models describing the vertical distribution of wind-eroded sediment[J].Soil Science Society of America Journal,1996,60:1914-1919.

[23]Panebianco J E,Buschiazzo D E,Zobeck T M.Comparison of different mass transport calculation methods for wind erosion quantification purposes[J].Earth Surface Processes and Landforms,2010,35:1548-1555.

[24]Mertia R S,Santra P,Kandpal B K,et al.Mass-height profile and total mass transport of wind eroded aeolian sediments from rangelands of the Indian Thar Desert[J].Aeolian Research,2010,2:135-142.

[25]Ellis J T,Li B,Farrell E J,et al.Protocols for characterizing aeolian mass-flux profiles[J].Aeolian Research,2009,1:19-26.

[26]Mendez M J,Funk R,Buschiazzo D E.Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers[J].Geomorphology,2011,129(1/2):43-48.

[27]Dong Z B,Sun H Y,Zhao A G.WITSEG sampler:a segmented sand sampler for wind tunnel test[J].Geomorphology,2004,59(1/4):119-129.

[28]张正偲.腾格里沙漠东南缘风沙活动特征的观测与研究[D].北京:中国科学院,2009.

[29]Akaike H.A new look at the statistical model identification[J].IEEE Transactions on Automatic Control,1974,19(6):716-723.

[30]Minasny B,McBratney A B,Bristow K L.Comparison of different approaches to the development of pedotransfer functions of water retention curves[J].Geoderma,1999,93:225-253.

[31]兹纳门斯基A И.沙地风蚀过程的实验研究和沙堆防止问题[M].杨郁华译.北京:科学出版社,1960:120.

[32]吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:60-70.

[33]李振山,张琦峰.风沙流的输沙率沿程变化规律[J].中国沙漠,2006,26(2):189-193.

[34]董玉祥,Hesp P A,Namikas S L,等.海岸横向沙脊表面风沙流结构的野外观测研究[J].地理科学,2008,28(4):507-512.

[35]Fryrear D W,Stout J E,Hagen L J,et al.Wind erosion:field measurement and analysis[J].Transactions of the ASAE,1991,34(1):155-160

[36]Stout J E,Zobeck T M.The wolfforth field experiment:a wind erosion study[J].Soil Science,1996,161(9):616-632.

[37]王洪涛,董治宝,张晓航.风沙流中沙粒浓度分布的实验研究[J].地球科学进展,2004,19(5):732-735.

[38]Dong Z B,Qian G Q.Characterizing the height profile of the flux of wind-eroded sediment[J].Environmental Geology,2007,51:835-845.

[39]Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London:Methuen,1941.

[40]Wilson G R.Modeling Wind Erosion:Detachment and Maximum Transport Rate[D].Lubbock:Texas Tech University,1994.

[41]Neuman C M,Nickling W G.Momentum extraction with saltation:implications for experimental evaluation of wind profile parameters[J].Boundary-Layer Meteorology,1994,68:35-50.

[42]韩庆杰.华南热带湿润海岸风沙运动规律和防沙工程研究[D].北京:中国科学院,2009.

[43]Chepil W S.Dynamics of wind erosion:nature of movement of soil by wind[J].Soil Science,1945,60:305-320.

[44]Sharp R P.Wind-driven sand in Coachella Valley,California[J].Geological Society of America Bulletin,1964,75:785-830.

[45]朱震达.应用实验方法研究风沙地貌形成过程的若干特征[M]//中国科学院治沙队.治沙研究(第四号).北京:科学出版社,1962:48-61.

[46]韩致文,董治宝,王涛,等.塔克拉玛干沙漠风沙运动若干特征观测研究[J].中国科学(D辑),2003,33(3):255-263.

文章导航

/