收稿日期: 2012-03-02
修回日期: 2012-04-28
网络出版日期: 2012-04-28
Application of GAM Approach on Pattern of Grasshoppers’ Geographical Distribution: A case study in the upper reaches of Heihe River
Received date: 2012-03-02
Revised date: 2012-04-28
Online published: 2012-04-28
将基于样本调查数据的群落-地形因子回归分析与地理信息系统支持下的昆虫属性空间格局预测结合,是昆虫-地形关系定量研究的新途径。通用可加性模型(GAM)的非参数属性使之具有对不同数据类型的广泛适应性,成为这种“回归分析+空间预测”途经的有效手段。不同程度上依赖于数字高程模型的环境空间数据集是实现空间预测的必要条件。我们利用广义可加模型方法,定量分析了3种不同生态种蝗虫与地形因素的相关关系。结果表明:(1) 3种不同生态种的蝗虫具有不同的模型结构、模拟效果以及结果的稳定性,反映了所受地形因子影响的差异。(2) 蝗虫的广布种与地形因子关系最弱,局部地形的变化仅对其密度变化有影响;常见种受地形因子的影响明显高于广布种,同时受大尺度的海拔与微地形的剖面曲率影响;稀有种分布格局对地形条件的选择性最强,同时受限于海拔、坡度和坡向。(3) 模拟结果对常见种以及稀有种的模拟全部有效;对广布种的预测基本失败。(4) 模型预测变量的有效性和全面性决定了模型对数据的解释能力,非线性关系体现了蝗虫密度-地形指标的不确定性,除模型解释的变化外,其他生物因子、非生物因子以及随机因素也影响模型的可靠性。
李丽丽 , 赵成章 , 殷翠琴 , 王大为 , 张军霞 . GAM模型在蝗虫地理格局分布研究中的应用——以黑河上游3种天然草地蝗虫为例[J]. 中国沙漠, 2013 , 33(4) : 1071 -1077 . DOI: 10.7522/j.issn.1000-694X.2013.00151
Combining the field sampling-based regression analysis of community versus habitat attributes and GIS supported spatial prediction of topography factors is a new approach for the quantitative study of insect-environment relationship. As one of the non-parameter model types, Generalized Additive Models (GAM) is an efficient tool in regression analysis-spatial prediction, partly for its flexibility to a wide variety of data types. A spatially explicit database for environment factors that frequently rely on digitalized elevation model is the requisite background for spatial prediction. In this study, we employed the non-parametric GAM model to explore the potential distribution of the grasshopper richness in the upper reaches of Heihe River, western China. For each data requirement of GAM, 6 topographic indices were extracted and analyzed. The results showed that: (1) The structure and deviation square values of the models were different for different ecospecies indices, so were the model stability, indicating their differences in response to the gradients of topographic indices. (2) The relationship between habitat cosmopolitan species and topographic indices was not significant, and only local topography affected the density; The relationship between habitat common living and topographic indices was closer than between habitat cosmopolitan species and topographic indices, the most prominent effects came from profile of the micro-topography and the elevation in large scale; habitat rare species distribution pattern relied on topographic indices most closely, and the most prominent effects came from elevation, plan and aspect. (3) The predictions of the density patterns of rare species passed the validation with an independent sampling data, that of common living succeeded partially, but the prediction for the density of cosmopolitan species failed. (4) Efficient and adequate predictive variables were crucial for the interpretative capability of the models. The environmental factors and random factor were significantly correlated with those of accuracy and maneuverability of valuation for model and algorithm of the tree-based method. So the GAM model function for the probability species richness made sufficiently use of topographic index information, and realized multiple factors.
[1]陈永林.蝗虫生态种及其指示意义的探讨[J].生态学报,2001,21(1):156-158.
[2]康乐.蝗虫群落动态对草原放牧活动的反应[M]//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第五集).北京:科学出版社,1997:43-61.
[3]乌云娜,雒文涛,霍光伟,等.微生境尺度上放牧退化草原群落特征与土壤有机质的空间分异性[J].中国沙漠,2012,32(4):972-979.
[4]Legender P,Fortin M J.Spatial pattern and ecological analysis[J].Vegetatio,1989,80:107-138.
[5]刘继亮,李锋瑞.坡向和微地形对大型土壤动物空间分布格局的影响[J].中国沙漠,2008,28(6):1104-1112.
[6]Guisan A,Edwards T C,Hastie T.Generalized linear and generalized additive models in studies of species distributions:setting the scene[J].Ecological Modelling,2002,157:89-100.
[7]马松梅,张明理,陈曦.沙冬青属植物在亚洲中部荒漠区的潜在地理分布及驱动因子分析[J].中国沙漠,2012,32(5):1301-1307.
[8]李丽丽,赵成章,殷翠琴,等.黑河上游天然草地蝗虫物种丰富度与地形关系的GAM分析[J].昆虫学报,2011,54(11):1312-1318.
[9]赵成章,李丽丽,王大为,等.黑河上游天然草地蝗虫空间异质性与格局分析[J].生态学报,2012,32(13):4166-4172.
[10]Guisan A,Zimmermann N E.Predictive habitat distribution models in ecology[J].Ecological Modeling,2000,135:147-186.
[11]毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
[12]Pearson R G,Dawson T P,Berry P M,et al.Species:A Spatial Evaluation of Climate Impact on the Envelope of Species[J].Ecological Modelling,2002,154:289-300.
[13]陈林.红火蚁(Soleno psisinvicta)在中国的潜在分布研究[D].北京:中国农业科学院,2007.
[14]郑波,陈新军,李纲.GLM和GAM模型研究东黄海鲐资源渔场与环境因子的关系[J].水产学报,2008,32(3):379-386.
[15]沈泽昊,赵俊.基于植物-地形关系的物种丰富度空间格局预测——GAMs途径的一种应用[J].生态学报,2007,27(3):953-962.
[16]温仲明,赫晓慧,焦峰,等.延河流域本氏针茅(Stipa bungeana)分布预测——广义相加模型及其应用[J].生态学报,2008,28(1):192-201.
[17]甘肃省蝗虫调查协作组.甘肃省蝗虫图志[M].兰州:甘肃人民出版社,1985.
[18]Skidmore A K.A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model[J].International Journal of Geographical Information Science,1989,3:323-334.
[19]陈瑶,胥晓,张德然,等.四川龙门山西北部植被分布与地形因子的相关性[J].生态学杂志,2006,25(9):1052-1055.
[20]杨晋浩.S-PLUS实用统计分析[M].成都:电子科技大学出版社,2007:153-156.
[21]Swartzman G,Huang C,Kaluzny S.Spatial analysis of Bering Sea ground fish survey data using generalized additive models[J].Canadian Journal of Fisheries and Aquatic Sciences,1992,49:1366-1378.
[22]赵成章,李丽丽,殷翠琴,等.黑河上游天然草地蝗蝻空间格局异质性[J].兰州大学学报(自然科学版),2011,47(3):63-67.
[23]赵成章,周伟,王科明,等.黑河上游蝗虫与植被关系的CCA分析[J].生态学报,2011,31(12):3384-3390.
[24]MacArthur R H,Pianka E R.On optimal use of a patchy environment[J].American Naturalist,1966,100:603-609.
[25]陈永林.中国主要蝗虫及蝗灾生态学治理[M].北京:科学出版社,2007:139-196.
[26]Metzger M J,Leemans R,Schroter D.A multidisciplinary multi-scale framework for assessing vulnerabilities to global change[J].International Journal of Applied Earth Observation and Geoinformation,2005,7(4):253-267.
[27]Luoto M,Pyry J,Heikkinen R K,et al.Uncertainty of bioclimatic envelope models based on the geographical distribution of species[J].Global Ecology and Biogeography,2005,14:575-584.
[28]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
[29]李爱华,柏延臣.基于贝叶斯最大熵的甘肃省多年平均降水空间化研究[J].中国沙漠,2012,32(5):1408-1416.
[30]Florinsky I V,Kuryakova G A.Determination of grid size for digital terrain modeling in landscape investigations:exemplified by soil moisture distribution at a mirco-scale[J].International Journal of Geographical Information Science,2000,14(8):815-832.
[31]Gyasi-Agyei Y,Willgoose G,De Troch F.Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology[J].Hydrological Processes,1995,9:363-382.
[32]孟现勇,刘志辉,李诚志,等.基于栅格尺度的沙漠化预警模型研究——以塔里木河下游中段区域为例[J].中国沙漠,2013,33(1):24-32.
/
〈 |
|
〉 |