收稿日期: 2012-09-08
修回日期: 2012-10-22
网络出版日期: 2012-10-22
Response of Ionic Absorption and Distribution in Different Organs of Corispermum patelliforme to NaCl Stress
Received date: 2012-09-08
Revised date: 2012-10-22
Online published: 2012-10-22
以荒漠地区一年生植物碟果虫实(Corispermum patelliforme)为试验材料,采用营养液培养法研究了不同浓度NaCl盐胁迫对蝶果虫实幼苗含水量及矿质离子在根、茎、叶中的吸收和分配的影响,探讨了碟果虫实耐盐的离子响应机制。结果表明:NaCl浓度为100 mmol\5L-1时植株含水量比对照有所降低,高于200 mmol\5L-1时含水量有不同程度的增加,可知碟果虫实以增加植株含水量、稀释盐离子浓度的方式减缓盐离子造成的生理干旱;盐胁迫下随着根系对Na+和Cl-吸收的增加, Si4+﹑K+﹑Ca2+含量逐渐降低,引起K+/Na+﹑Si4+/Na+﹑Ca2+/Na+比值显著降低,且地下部分降低的程度显著高于地上部分, 因此有利于避免地上部分Si4+、Ca2+﹑K+缺乏, 以维持地上部营养平衡和正常生长;从分析离子选择性的SNa+,K+数据发现,盐胁迫下植株根部拦截了部分Na+,减缓了对地上部分的伤害,叶片对K+吸收具有很好的选择性, 对于维持地上部分离子平衡、降低Na+毒害和正常的光合作用具有重要意义。
杨小菊 , 赵 昕 , 石 勇 , 赵鹏善 , 李新荣 . 碟果虫实(Corispermum patelliforme)离子吸收与分配对盐胁迫的响应[J]. 中国沙漠, 2013 , 33(6) : 1735 -1742 . DOI: 10.7522/j.issn.1000-694X.2013.00259
Corispermum patelliforme,an annual wild plant distributed in arid desert areas of the North China and Mongolia. This paper studied the responses of the relative water content, ion absorption and distribution to different concentration of NaCl stress. The results indicated that above 200 mmol\5L-1 NaCl concentration salt stress enhanced the ability of water absorption of the plant cell. So it could dilute cell's salt ion concentration to reduce physiological drought caused by salt ion. With the increasing uptake of Na+ and Cl- by roots under salt stress, the Ca2+, K+ and Si4+ content decreased gradually. It lead to the ratios of K+/Na+, Ca2+/Na+ and Si4+/Na+in root, stem and leaf of C. patelliforme decreased significantly. And the K+/Na+, Ca2+/Na+ and Si4+/Na+ratio of underground part roots reduced degree significantly higher than the aboveground parts, so to avoid the ground parts Si4+, Ca2+, K+ lack, in order to maintain aboveground organs nutrition balance and normal growth. Through analysis SNa,K data, it was found that the C. patelliforme roots retained more Na+ and prevent Na+ entering the leaves. Therefore the Na+ damage on leaves was reduced; The K+ Selective absorption on leaves of C. patelliforme were strengthened under NaCl stress, which was significant for keeping iron homeostasis and remain normal photosynthesis in leaves.
[1]Yamaguchi T,Blumwald E.Developing salt-tolerant crop plants:challenges and opportunities[J].Trends in Plant Science,2005,10(12):616-620.
[2]Cheeseman J M.Mechanisms of salinity tolerance in plants[J].Plant Physiology,1988,87:547-550.
[3]Gorham J,Wyn Jones R G.Solute distribution in Suaeda maritima[J].Planta,1983,157:344-349.
[4]Boyer J S.Plant productivity and environment[J].Science,1982,218:443-448.
[5]王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26(6):845-850.
[6]王锁民,朱兴运,舒孝喜.碱茅离子吸收与分配特性研究[J].草业学报,1994,3(1):39-43.
[7]刘媖心.中国沙漠植物志(第一卷)[M].北京:科学出版社,1985:407-409.
[8]谭会娟,李新荣,赵昕,等.红砂愈伤组织适应盐胁迫的渗透调节机制研究[J].中国沙漠,2011,31(5):1119-1123.
[9]谭会娟,贾荣亮,刘玉冰,等.NaCl胁迫下红砂愈伤组织中主要离子累积特征的研究[J].中国沙漠,2010,30(6):1305-1310.
[10]王志才,牙库甫江·阿西木,王艳,等.水盐胁迫对花花柴种子萌发的影响[J].中国沙漠,2012,32(3):750-755.
[11]王进,李新荣.盐胁迫对盐芥悬浮培养细胞超微结构的影响[J].中国沙漠,2011,31(4):878-883.
[12]贾恢先,孙学刚.中国西北内陆盐生植物图谱[M].北京:中国林业出版社,2005:35.
[13]Volkov V,Wang B,Doming P J,et al.Thellungiella halophila, a salt relative of Arabidopsis thaliana,possesses effective mechanisms to discriminate between potassium and sodium[J].Plant,Cell and Environment,2003,27:1-14.
[14]Vázquez M D,Poschenrieder C,Corrales I,et al.Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety[J].Plant Physiology,1999,119(2):435-444.
[15]Pitman M G.Transport across the root and shoot/root interactions[J].Salinity Tolerance in Plants:strategies for Crop Improvement New York,1984:93-l23.
[16]Blumwald E.Sodium transport and salt tolerance in plants[J].Current Opinion in Cell Biology,2000,12(4):431-434.
[17]Flowers T J,Yeo A R.Breeding for salinity resistance in crop plants:where next[J].Australian Journal of Plant Physiology,1995,22(6):875-884.
[18]Tester M,Davenport R J.Na+ tolerance and Na+ transport in higher plants [J].Annals of Botany,2003,91:503-527.
[19]Zhu J K,Regulation of ion homeostasis under salt stress[J].Curreent Opinion in Plant Biology,2003,6(5):441-445.
[20]田野,张焕朝,方升佐.盐胁迫下土壤-杨树系统中离子运移与分布特征[J].南京林业大学学报(自然科学版),2003,27(4):5-9.
[21]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[M]//余叔文,汤章城.植物生理和分子生物学.北京:科学出版社,1998:752-769.
[22]阎秀峰,孙国荣.碱性盐胁迫下星星草幼苗中几种渗透调节物质的变化[J].植物研究,1999,19(3):347-353.
[23]刘炳响,梁海永,李子敬,等.不同盐碱条件下白榆器官中K+、Na+、Ca2+和Mg2+分布特征[J].西北林学院学报,2008,23(5):7-11.
[24]Tuteja N,Mahajan S.Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum[J].Plant Signaling and Behavior,2007,2(5):358-361.
[25]Epstein E.Silicon [J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:641-664.
[26]杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-276.
[27]王龙强,米永伟,蔺海明.盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响[J].草业学报,2011,20(4):129-136.
[28]Cramer G R,Epstein E,Lauchli A.Effects of sodium potassium and calcium on salt-stress barley(Ⅱ) elemental analysis[J].Physiologia Plantarum,1991,81:197-202.
[29]冯学赞,王玉珍,罗景兰,等.盐胁迫下珠美海棠体内离子分配与叶片耐盐量研究[J].中国生态农业学报,2003,11(2):29-31.
/
〈 |
|
〉 |