针对新疆渭干河-库车河三角洲绿洲土壤盐分动态监测中存在的方法问题,首先用灰色关联度模型分析影响形成土壤盐渍化的各因子,并确定其与土壤盐分之间的关联度,然后将人工智能计算技术引入土壤盐分的预测中,经过多次调整网络结构和参数,建立了预测表层土壤盐分的BP神经网络模型和RBF神经网络模型。结果表明:以潜在蒸散量、地下水埋深、地下水矿化度、土壤电导率、总溶解固体、pH值、坡度和土地利用类型8个因素为输入因子,以土壤含盐量为输出因子的BP网络模型和RBF网络模型可有效模拟土壤盐分与其影响因子之间的内在复杂关系,并且有较高的精度。BP网络模型预测误差略低于RBF神经网络。本研究可为分析和预测土壤盐渍化动态规律提供一种有效可行的新途径,是对传统土壤盐分动态研究的补充。
Aiming at the problem indynamic monitoring the soil salinity in the oasis of the Ugan Kuqa River Delta in Xinjiang, we analyzed the factorsaffectingthe soil salinization withthe gray-correlation-degree model, and determinedthe degree of the association between the factors and the soil salinity. The artificial intelligence technology was utilized in the soil salinity prediction. After several adjustments on the network structure and parameters, we established a BP neural network model and a RBF neural network model to predict surface soil salinity. The results showed that the BP network model and RBF network model, takingthe evapotranspiration, groundwater depth, groundwater mineralization, soil conductivity, total dissolved salts, pH value, slope and land-use type as input factors andsoil salinity as output factor, couldeffectively simulate soil salinity and its impact to the inherent complexity of the relationship between the factors.The prediction error of the BP network model was less than that of the RBF. The present study could provide an effective and viable new way for analyzing and predicting the soil salinization. Itcould be a complement to the traditional dynamicsmonitoringon soil salinity.
[1] 罗先香,邓伟.松嫩平原西部土壤盐渍化动态敏感性分析与预测[J].水土保持学报,2000,14(3):36-40.
[2] 王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993.
[3] 杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-846.
[4] 田长彦,周宏飞.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2000,23(2):177-181.
[5] 张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,19(2):39-44.
[6] 郭瑞,冯起,瞿禄新,等.改进型BP神经网络对民勤绿洲地下水位的模拟预测[J].中国沙漠,2010,30(3):737-741.
[7] 韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
[8] 左合君,勾芒芒,李钢铁,等.BP网络模型在沙尘暴预测中的应用研究[J].中国沙漠,2010,30(1):193-197.
[9] 董鸣.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996.
[10] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[11] 徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
[12] 周洪华,陈亚宁,李卫红,等.新疆铁干里克绿洲水文过程对土壤盐渍化的影响[J].地理学报,2008,63(7):714-724.
[13] 封志明,郑海霞,杨艳昭,等.基于GIS的农业气候资源区域化问题研究--以甘肃省为例[J].地理科学,2004,24(4):444-451.
[14] 高歌,陈德亮,任国玉,等.1956-2000年中国潜在蒸散量变化趋势[J].地理研究,2006,25(3):378-387.
[15] 张世熔,孙波,赵其国,等.南方丘陵区不同尺度下土壤氮素含量的分布特征[J].土壤学报,2007,44(5):885-892.
[16] 侯景儒,尹镇南,李维明,等.实用地质统计学[M].北京:地质出版社,1998.
[17] 汤洁,林年丰,卞建民,等.应用GIS-ANN进行土地盐碱化危险度评价--以吉林西部平原为例[J].自然灾害学报,2003,12(4):34-39.