img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

梭梭(Haloxylon ammodendron)叶片气孔导度与气体交换对典型降水事件的响应

  • 杨淇越 ,
  • 赵文智
展开
  • 1. 中国科学院寒区旱区环境与工程研究所 中国生态系统研究网络临泽内陆河流域研究站/中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
杨淇越(1983—),男,甘肃会宁人,博士研究生,主要从事生态水文研究。Email:yangqy@lzb.ac.cn

收稿日期: 2013-11-13

  修回日期: 2014-02-24

  网络出版日期: 2014-03-20

基金资助

国家杰出青年科学基金项目(41125002)资助

Responses of Leaf Stomatal Conductance and Gas Exchange of Haloxylon ammodendron to Typical Precipitation Event in the Hexi Corridor

  • Yang Qiyue ,
  • Zhao Wenzhi
Expand
  • 1. Linze Inland River Basin Research Station/Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-11-13

  Revised date: 2014-02-24

  Online published: 2014-03-20

摘要

C4植物以其较高的水分利用效率而表现出较强利用荒漠环境有限降水的能力,但对其气孔行为和气体交换对降水响应的理解并不深入。本研究选择荒漠区沙丘上6~7年生的梭梭(Haloxylon ammodendron),利用自制的降水拦截设施,将每次降水事件后样地中接受的降水量分别减少和增加10%、20%和30%,形成包括对照在内的7个降水梯度,研究梭梭气孔导度(Gs)与净光合速率(Pn)对典型降水事件的响应。结果表明:6~12 mm的降水对土壤水分的补给集中在50 cm土壤深度范围内。降水量每增加10%,GsPn分别增加9.17%和4.17%;GsPn在降水前后呈现先增加后降低的单峰型趋势,峰值出现在降水后第1 天,两者与土壤水分含量(SVWC)、空气相对湿度(RH)以及水汽压差(VPD)显著相关。降水后梭梭黎明前叶水势在-2.08~-2.74 MPa时叶片气体交换主要受气孔因素影响,而当叶水势降至-3.16 MPa以下时主要受非气孔因素控制。

本文引用格式

杨淇越 , 赵文智 . 梭梭(Haloxylon ammodendron)叶片气孔导度与气体交换对典型降水事件的响应[J]. 中国沙漠, 2014 , 34(2) : 419 -425 . DOI: 10.7522/j.issn.1000-694X.2013.00333

Abstract

C4 plants have strong ability to use limited precipitation in desert environment due to higher water use efficiency, but it is not understanding of stomatal behavior and gas exchange response to precipitation thoroughly. Here the responses of leaf stomatal conductance (Gs) and gas exchange (Pn) of 6-7 year-old Haloxylon ammodendron in desert-sand to seven rainfall treatments (±30%, ±20%, ±10%, CK) which were applied by rainfall manipulative experiments were evaluated. The results showed that the supply of 6-12 mm rainfalls to soil moisture concentrated within 50 cm soil depths. Gs and Pn increased by 9.17% and 4.17% with the increase of precipitation by 10%, respectively. Gs and Pn showed a trend of unimodality which increased to a peak value at 1d after precipitation and then decreases. Both were correlated significantly to Soil moisture content (SVWC), Air relative humidity (RH) and Vapor pressure deficit (VPD). Leaf gas exchange was mainly affected by stomatal factors when predawn leaf water potential of H. ammodendron between -2.08 MPa and -2.74 MPa after precipitation, while by non- stomatal factors when predawn leaf water potential dropped to below -3.16 MPa.

参考文献

[1] 刘冰,李守波. 黑河流域荒漠区降水格局及其脉动特征[J].生态学报,2010,30(19):5194-5199.
[2] 刘洪兰,白虎志,张俊国.河西走廊中部近53年降水变化及未来趋势预测[J].干旱区研究,2011,28:146-150.
[3] 陈拓,冯虎元,徐世建,等.荒漠植物叶片碳同位素组成及其水分利用效率[J].中国沙漠,2002,22(3):87-90.
[4] Zou T,Li Y,Xu H,et al.Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils[J].Ecological Research,2010,25(1):185-194.
[5] Ripley B,Frole K and Gilbert M.Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) panicoid grasses[J].Annals of Botany,2010,105(3):493-503.
[6] Winter K.C4 plants of high biomass in arid regions of asia-occurrence of C\-4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR[J].Oecologia,1981,48(1):100-106.
[7] Su P,Cheng G,Yan Q,et al.Photosynthetic regulation of C\-4 desert plant Haloxylon ammodendron under drought stress[J].Plant Growth Regulation,2007,51(2):139-147.
[8] 黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530.
[9] Su P X,Liu X M,Zhang L X,et al.Comparison of δ13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants[J].Israel Journal of Plant Sciences,2004,52(2):87-97.
[10] 吴玉,郑新军,李彦.不同功能型原生荒漠植物对小降雨的光合响应[J].生态学杂志,2013,32(10):2591-2597.
[11] 李兴,蒋进,宋春武,等.不同坡向梭梭幼苗的生长状况和适应特征[J].中国沙漠,2013,33(1):101-105.
[12] Gao S,Su P,Yan Q,et al.Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes[J].Science China Life Sciences,2010,53(6):718-728.
[13] 李彦,许皓.梭梭对降水的响应与适应机制——生理、个体与群落水平碳水平衡的整合研究[J].干旱区地理,2008,31(3):313-323.
[14] 许皓,李彦,邹婷,等.梭梭(Haloxylon ammodendron)生理与个体用水策略对降水改变的响应[J].生态学报,2007,27(12):5019-5028.
[15] Xu H,Li Y.Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J].Plant and Soil,2006,285(1/2):5-17.
[16] 苏培玺,严巧娣.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2006,26(1):75-82.
[17] 许皓,李彦.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,2005,25(7):1309-1316.
[18] 吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79-84.
[19] 苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用,蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
[20] 邹婷,李彦,许皓,等.不同生境梭梭对降水变化的生理响应及形态调节[J].中国沙漠,2011,31(2):428-435.
[21] 王亚婷,唐立松.古尔班通古特沙漠不同生活型植物对小雨量降雨的响应[J].生态学杂志,2009,28(6):1028-1034.
[22] 李小明,名取俊树,大政谦次.人工环境下两种梭梭幼苗光合水分关系的比较研究[J].植物学报,1993,35(10):758-765.
[23] 马全林,王继和,纪永福,等.固沙树种梭梭在不同水分梯度下的光合生理特征[J].西北植物学报,2003,23(12):2120-2126.
[24] Zhao W,Chang X and Zhang Z.Transpiration of a Linze jujube orchard in an arid region of China[J].Hydrological Processes,2009,23(10):1461-1470.
[25] Berry J A,Downton W J S.Environmental regulation of photosynthesis[M].Govindjee,New York,USA:Academic Press,1982:263-343.
[26] 刘元波,高前兆.沙地降雨入渗水分动态[J].中国沙漠,1995,15(2):143-150.
[27] 刘新平,张铜会,赵哈林,等.流动沙丘降雨入渗和再分配过程[J].水利学报,2006,37(2):166-171.
[28] 郭柯,董学军,刘志茂.毛乌素沙地沙丘土壤含水量特点——兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,(3):275-279.
[29] 魏雅芬,郭柯,陈吉泉.降雨格局对库布齐沙漠土壤水分的补充效应[J].植物生态学报,2008,32(6):1346-1355.
[30] Huang Y,Guo Y H.Root dstribution characteristics of Haloxylon ammodendron (Mey.) bunge plantation[J].Acta Agrestia Sinica,2009,17(1):84-87.
[31] Xu G Q,Li Y,Xu H.Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs,Tamarix ramosissima and Haloxylon ammodendron,with different rooting patterns[J].Ecological Research,2011,26(6):1071-1080.
[32] 吕金岭,张希明,吕朝燕,等.准噶尔盆地南缘荒漠区梭梭维持水源初步研究[J].中国沙漠,2013,33(1):110-117.
[33] Rundel P,Nobel P.Structure and function in desert root systems[M]//Plant Root Growth:An Ecological Perspective.Oxford,UK:Blackwell Scientific Publications,1991:349-378.
[34] Zabri A,Burrage S.The effects of vapour pressure deficit (VPD) and enrichment with CO\-2 on water relations,photosynthesis,stomatal conductance and plant growth of sweet pepper (Capsicum annum L.) grown by NFT[C]//II International Symposium on Irrigation of Horticultural Crops,449,1996:561-568.
[35] Küppers M.Water vapour and carbon dioxide exchange of leaves as affected by different environmental conditions[C]//Symposium on Biological Aspects of Energy Saving in Protected Cultivation,229,1987:85-112.
[36] Franco A C,Soyza A G,Virginia R A,et al.Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata[J].Oecologia,1994,97(2):171-178.
[37] Tinoco-Ojanguren C,Pearcy R W.Stomatal dynamics and its importance to carbon gain in two rainforest Piper species.I.VPD effects on the transient stomatal response to lightflecks[J].Oecologia,1993,94(3):388-394.
[38] 唐凤德,武耀祥,韩士杰,等.长白山阔叶红松林叶片气孔导度与环境因子的关系[J].生态学报,2008,28(11):5649-5655.
[39] 赵文智,程国栋.生态水文学——揭示生态格局和生态过程水文学机制的科学[J].冰川冻土,2001,23(4):450-457.
[40] 赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠,1995,15(3):241-243.
[41] 杨文斌.风成沙丘上梭梭林衰亡的水分特性研究[J].干旱区研究,1991(1):30-34.
[42] 李小明.不同水分条件下两种梭梭蒸腾作用比较[J].干旱区研究,1989,6(1):66-69.
[43] Farquhar G D,Sharkey T D.Stomatal Conductance and Photosynthesis[J].Annual Review of Plant Physiology,1982,33(1):317-345.
文章导航

/