img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

水分胁迫下马铃薯SnRK2基因的表达模式与生理响应

  • 毛娟 ,
  • 白江平 ,
  • 张俊莲 ,
  • 范阿棋 ,
  • 马宗桓 ,
  • 吴金红 ,
  • 王蒂
展开
  • 1. 甘肃农业大学 甘肃省作物遗传改良与种质创新重点实验室/甘肃省干旱生境作物学重点实验室, 甘肃 兰州730070;
    2. 甘肃农业大学 农学院, 甘肃 兰州 730070
毛娟(1981—),女,甘肃临洮人,博士研究生,讲师,研究方向为植物生物技术。Email:maojuan@gsau.edu.cn

收稿日期: 2013-10-16

  修回日期: 2013-11-06

  网络出版日期: 2014-03-20

基金资助

甘肃省干旱生境作物学重点实验室基金项目(GSCS-2012-04,GSCS-2010-16)资助

SnRK2 Gene Expression in Responses to Physiological Characteristics under Water Stress in Solanum tuberosum

  • Mao Juan ,
  • Bai Jiangping ,
  • Zhang Junlian ,
  • Fan Aqi ,
  • Ma Zonghuan ,
  • Wu Jinhong ,
  • Wang Di
Expand
  • 1. Gansu Key Lab of Crop Improvement & Germplasm Enhancement/Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
    2. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Received date: 2013-10-16

  Revised date: 2013-11-06

  Online published: 2014-03-20

摘要

以 “大西洋”和“陇薯3号”两个品种盆栽苗为试验材料,研究了水分胁迫下马铃薯(Solanum tuberosumStSnRK2基因家族的表达特征及其与植株生理指标变化的相关性。结果表明:在发生严重水分胁迫时,“陇薯3号”和“大西洋”的抗氧化酶活性、MDA含量、相对电导率和脯氨酸含量均较对照显著提高,但增长幅度在品种间存在差异;StSnRK2基因家族的8个成员的相对表达量在“大西洋”和“陇薯3号”之间也存在明显差异,StSnRK2.1、StSnRK2.2和StSnRK2.3在两个品种中均表现为水分胁迫后相对表达量显著高于对照的趋势;StSnRK2.7的相对表达量与对照无显著差异,而StSnRK2.4在“陇薯3号”的相对表达量是对照的9.5倍,是8个基因成员在受水分胁迫后相对表达量最高的一个基因;StSnRK2.1、StSnRK2.2、StSnRK2.3、StSnRK2.4和StSnRK2.6的相对表达量均与部分生理指标呈极显著正相关,StSnRK2.5和StSnRK2.8两个基因的相对表达量与部分生理指标呈极显著负相关,StSnRK2.7基因的相对表达量与生理指标无显著相关性。

本文引用格式

毛娟 , 白江平 , 张俊莲 , 范阿棋 , 马宗桓 , 吴金红 , 王蒂 . 水分胁迫下马铃薯SnRK2基因的表达模式与生理响应[J]. 中国沙漠, 2014 , 34(2) : 481 -487 . DOI: 10.7522/j.issn.1000-694X.2013.00341

Abstract

The physiological response and StSnRK2 expression profiles of two solanum tuberosum (Longshu No.3 and Atlantic) were studied after water stress treatments. The physiological character of the acticivies of anti-oxcide enzymes, malondialdehyde content, relative conductivity and proline content changed, but the two cultivars had different characters. The relative expression levels of 8 members in Atlantic and Longshu No.3 had obvious difference after severe water stress. The relative expression of StSnRK2.1, StSnRK2.2 and StSnRK2.3 were significantly higher than the control, however, obvious difference was found in an increase extent of different gene expression. StSnRK2.7 had no difference with the control. The expression of StSnRK2.4 was 9.5 fold in Longshu No.3, which was the maximum among the 8 members after water stress. The expression of StSnRK2.1, StSnRK2.2, StSnRK2.3, StSnRK2.4 and StSnRK2.6, had a high significantly positive correlation with some of the physiological characteristics. The significantly negative correlation was observed between the expression of StSnRK2.5 and StSnRK2.8 and some of the physiological characteristics. Expression of StSnRK2.7 had no relationship of physiological characteristics.

参考文献

[1] Nasseri A,Bahramloo R.Potato cultivar Marfuna yield and water use efficiency responses to early-season water stress[J].International Journal Agriculture and Biology,2009,11:201-204.
[2] 刘玲玲,李军,李长辉,等.马铃薯可溶性蛋白、叶绿素、及ATP含量变化与品种抗旱性关系的研究[J].中国马铃薯,2004,18(4):201-204.
[3] 张武.马铃薯叶绿素含量、CAT 活性与品种抗旱性关系的研究[J].农业现代化研究,2007,28(5):622-624.
[4] 徐宗才,田丰,刘云.不同品种马铃薯生理特性与抗旱性研究[J].干旱区农业研究,2008,26(5):153-155.
[5] 姚春馨,丁玉梅,周晓罡,等.马铃薯抗旱相关表型效应分析与抗旱指标初探[J].作物研究,2012,26(5):474-478.
[6] 范敏,金黎平,刘庆昌,等.马铃薯抗旱机理及其相关研究进展[J].中国马铃薯,2006,20(2):101-107.
[7] Shin D,Moon S J,Han S,et al.Expression of StMYB1R-1,a novel potato single MYB-Like domain transcription factor,increases drought tolerance[J].Plant Physiology,2011,155:421-432.
[8] Ambrosone A,Costa A,Martinelli R,et al.Differential gene regulation in potato cells and plants upon abrupt or gradual exposure to water stress[J].Acta Physiologiae Plantarum,2011,33:1157-1171.
[9] Rahnama H,Vakilian H,Fahimi H,et al.Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene[J].Acta Physiologiae Plantarum,2011,33:1521-1533.
[10] Coello P,Hey S J,Halford N G.The sucrose non-fermenting-1-related (SnRK) family of protein kinases:potential for manipulation to improve stress tolerance and increase yield[J].Journal of Experimental Botany,2011,62(3):883-893.
[11] Halford,N G,Hardie,D G.SNF1-related proteinkinases:glob al regulators of carbon metab olism in plants?[J].Plant Molecular Biology,1998,37:735-748.
[12] Halford N G,Hey S J.Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants[J].Biochemical Journal,2009,419:247-259.
[13] Anderberg R J,Walker-Simmons K.Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homologyto protein kinases[J].PNAS,1992,89:10183-10187.
[14] Boudsocq M,Barbier-Brygoo H,Lauriere C.Identification of nine sucrose non fermenting 1-related protein kinases 2 activated by hyper-osmotic and saline stresses in Arabidopsis thaliana[J].Journal of Biological Chemistry,2004,279(40):41758-41766.
[15] Kobayashi Y,Yamamoto S,Minami H,et al.Differential activation of the rice sucrose non fermenting1 related protein kinase2 family by hyper osmotic stress and abscisic acid[J].Plant Cell,2004,16:1163-1177.
[16] Huai J L,Wang M,He J G,et al.Cloning and characterization of the SnRK2 gene family from Zea mays[J].Plant Cell Reports,2008,28:1861-1868.
[17] Boneh U,Biton I,Schwartz A,et al.Characterization of the ABA signal transduction pathway in Vitis vinifera[J].Plant Science,2012,187:89-96.
[18] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
[19] VanGuilder H D,Vrana K E,Freeman W M.Twenty-five years of quantitative PCR for gene expression analysis[J].Biotechniques,2008,44(5):619-626.
[20] 彭云玲,赵小强,任续伟,等.干旱胁迫对不同株型玉米大喇叭口期生长的影响[J].中国沙漠,2013,33(4):1064-1070.
[21] 马彦军,马瑞,曹致中,等.PEG胁迫对胡枝子幼苗叶片生理特性的影响[J].中国沙漠,2012,32(6):1662-1668.
[22] 韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿抗旱性主成分及隶属函数分析[J].草地学报,2006,14(2):142-146.
[231] Bartels D,Sunkar R.Drought and salt tolerance in plants[J].Critical Reviews in Plant Sciences,2005,24:23-58.
[24] Xiong L M,Karen S S,Zhu J K.Cell signaling during cold,drought,and salt stress[J].The Plant Cell Online,2002 supplement,S165-S183.
[25] 王转,臧庆伟,郭志爱,等.小麦幼苗期水分胁迫所诱导基因表达谱的初步分析[J].遗传学报,2004,31(8):842-849.
[26] 王卫锋,杨晓青,张岁岐,等.剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J].作物学报,2013,39(8):1462-1468.
[27] 周永斌,闵东红,徐兆师,等.不同水分胁迫下转W16小麦回交株系基因表达特性及其抗旱机制[J].农业生物技术学报,2012,20(11):1271-1281.
[28] Chaves M M,Pereira J S,Maroco J,et al.How plants cope with water stress in the field[J].Annals of Botany,2002,89:907-916.
[29] Xu Z Z,Zhou G S,Shimizu H.Plant responses to drought and rewatering plant[J].Signaling & Behavior,2010,5:649-654.
[30] Mao X G,Zhang HY,Tian S J,et al.TaSnRK2.4,an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.),confers enhanced multistress tolerance in arabidopsis[J].Journal of Experimental Botany,2010,61(3):683-696.
[31] Zhang H Y,Mao X G,Jing R L,et al.Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses[J].Journal of Experimental Botany,2011,62(3):975-988.
[32] Zhang H Y,Mao X G,Wang C S,et al.Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought,salt and low temperature in arabidopsis [J].PLoS One,2010,5:1-12.
文章导航

/