img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

长江源多年冻土区热融湖塘的形成对土壤沙化过程的影响

  • 高泽永 ,
  • 王一博 ,
  • 文晶 ,
  • 盛兆海
展开
  • 1. 兰州大学 资源与环境学院, 甘肃 兰州 730000;
    2. 中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室, 甘肃 兰州 730000;
    3. 格尔木市气象局 五道梁气象站, 青海 格尔木 816000
高泽永(1990-),男,甘肃庆阳人,硕士研究生,主要从事寒区旱区水文过程的研究。Email:gaozy12@lzu.edu.cn

收稿日期: 2013-05-08

  修回日期: 2013-07-07

  网络出版日期: 2014-05-20

基金资助

国家自然科学基金项目(41271092);冻土工程国家重点实验室开放基金项目(SKLFSE201109)资助

The Influence of Thermokarst Lake Formation on Soil Desertification Process in Permafrost Regions of the Source Region of the Yangtze River

  • Gao Zeyong ,
  • Wang Yibo ,
  • Wen Jing ,
  • Sheng Zhaohai
Expand
  • 1. College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000,China;
    2. State Key laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. Weather Station of Wudaoliang, Golmud Meteorological Bureau, Golmud 816000, Qinghai, China

Received date: 2013-05-08

  Revised date: 2013-07-07

  Online published: 2014-05-20

摘要

选择长江源区五道梁为研究区域,以典型发育的热融湖塘为研究对象,运用激光粒度仪测得土壤粒径分布,并结合分形模型对高寒草甸土壤颗粒分布与水文过程进行研究。结果表明:热融湖塘的形成加快了长江源区高寒草甸土壤沙质化的进程,随着其影响程度的加剧,黏粒、粉粒含量逐渐减小,砂粒含量逐渐增大,同时土壤颗粒体积分形维数也逐渐减小,并与黏粒、粉粒呈显著正相关,与砂粒含量呈显著负相关,土壤颗粒体积分形维数可代替土壤不同粒径颗粒组成表征土壤沙质化的进程。此外,在热融湖塘影响下的土壤水文过程的改变,是加快土壤沙质化的重要因素之一。

本文引用格式

高泽永 , 王一博 , 文晶 , 盛兆海 . 长江源多年冻土区热融湖塘的形成对土壤沙化过程的影响[J]. 中国沙漠, 2014 , 34(3) : 758 -764 . DOI: 10.7522/j.issn.1000-694X.2013.00376

Abstract

We chose Wudaoliang in the source region of the Yangtze River as the study area and a typically developed thermokarst lake as the study object, using the laser diffraction method to measure the soil particle size distribution (PSD), and studied the PSD and hydrological process of alpine meadow soil combined with a fractal model. The results show that the formation of the thermokarst lake speeds up the desertification of alpine meadow soil in the source region of the Yangtze River. As the affect intensifies, the share of clay particle (0-2 μm) and silt particle (2-50 μm) gradually decreases, while the share of sand particle (50-2000 μm) increases. Meanwhile, the volume fractal dimension also reduces gradually, showing a significant positive linear correlation with the share of clay particle and silt particle and a significant negative linear correlation with the share of sand particle. Volume fractal dimension of soil can substitute for PSD to characterize the process of soil desertification. In addition, soil hydrological process changes under the influence of thermokarst lakes, which is one of the important factors speeding up soil desertification.

参考文献

[1] Milla'n H,Gonza'lez-Posada M,Aguilar M,et al.On the fractal scaling of soil data.Particle-size distributions[J].Geoderma,2003,117:117-128.
[2] Perfect E,Mclaughlin N B,Kay B D,et al.An improved fractal equation for the soil water retention curve[J].Water Resources Research,1996,32:281-287.
[3] Su Y Z,Zhao H L,Zhao W Z,et al.Fractal features of soil particle size distribution and the implication for indicating desertification[J].Geoderma,2004,122:43-49.
[4] Footladmand H R,Sepaskhah A R.Improved estimation of the soil particle-size distribution from textural data[J].Biosysterms Engineering,2006,94(1):133-138.
[5] Liu X,Zhang G C,Heathman G C,et al.Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yinmeng,China[J].Geoderma,2009,154:123-130.
[6] 赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征[J].土壤学报,2002,39(5):877-881.
[7] 朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社,1994:157-179.
[8] Perfect E,Kay B D.Applications of fractal in soil and tillage research:a review[J].Soil & Tillage Research,1995,36:1-20.
[9] Perfect E.Fractal models for the fragmentation of rocks and soils:a review[J].Engineering Geology,1997,48:185-198.
[10] Arasan K,Akbulut S,Hasiloglu A S,The Relationship between the Fractal Dimension and Shape Properties of Particles[J].Journal of Civil Engineering,2011,15:1219-1225.
[11] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
[12] 管孝艳,杨培岭,任树海,等.基于多重分形理论的壤土粒径分布非均匀分析[J].应用基础与工程科学学报,2009,17(2):197-204.
[13] 赵林,李韧,丁永健,等.青藏高原1977-2006年土壤热状况研究[J].气候变化研究进展,2011,7(5):307-315.
[14] Niu F,Lin Z,Liu H,et al.Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J].Geomorphology,2011,132:222-233.
[15] 罗京,牛富俊,林战举,等.青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J].冰川冻土,2012,34(5):1110-1117.
[16] 王一博,吴青柏,牛富俊.长江源北麓河流域多年冻土区热融湖塘形成对高寒草甸土壤环境的影响[J].冰川冻土,2011,33(3):659-667.
[17] 王根绪,李元寿,王一博,等.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土,2007,29(2):159-168.
[18] 王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
[19] Turcotte D L.Fractals and fragmentation[J].Journal of Geophysical Research,1986,91:1921-1926.
[20] Tyler S W,Wheatcraft S W.Fractal scaling of particle-size distributions:analysis and limitations[J].Soil Science Society of America Journal,1989,53:987-996.
[21] Martin M A,Montero E.Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions[J].Soil & Tillage Research,2002,64:113 123.
[22] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.
[23] 黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-496.
[24] 任雪,褚贵新,王国栋,等.准噶尔盆地南缘绿洲-沙漠过渡带“肥岛”形成过程中土壤颗粒的分形研究[J].中国沙漠,2009,29(2):298-304.
[25] 陈江,万力,梁四海,等.青藏高原生态环境变化趋势的初步探索[J].地球学报,2007,28(6):555-560.
[26] 李林,王振宇,徐维新,等.青藏高原典型高寒草甸植被生长发育对气候和冻土环境变化的响应[J].冰川冻土,2011,33(5):1006-1013.
[27] 王根绪,丁永建,王建,等.近十五年来长江黄河源区的土地覆被变化[J].地理学报,2004,59(2):163-173.
[28] 胡光印,董治宝,逯军峰,等.长江源区沙漠化及其景观格局变化研究[J].中国沙漠,2012,32(2):314-321.
[29] 王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
[30] 田青,王建兵,张德罡,等.腾格里沙漠南缘植被恢复过程中土壤理化性状的变化[J].中国沙漠,2013,33(3):772-776.
文章导航

/