img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生态与经济

基于RUE和NDVI的人类活动对植被干扰强度分析——以桂西北为例

  • 李辉霞 ,
  • 周红艺 ,
  • 魏兴琥
展开
  • 佛山科学技术学院 空间信息与资源环境系, 广东 佛山 528000
李辉霞(1978-),女,广东新丰人,博士,副教授,主要从事生态遥感研究。Email:chinagirlshelly@163.com

收稿日期: 2013-10-31

  修回日期: 2013-12-10

  网络出版日期: 2014-05-20

基金资助

教育部人文社会科学研究规划基金项目(13YJAZH041);中国科学院西部行动计划项目(KZCX2-XB3-10);国家自然科学基金项目(41371041,31170486)资助

Analysis of the Impact of Human Disturbance on Vegetation Based on RUE and NDVI:a case study in Northwest Guangxi, China

  • Li Huixia ,
  • Zhou Hongyi ,
  • Wei Xinghu
Expand
  • Department of Spatial Information and Resource and Environmental Science, Foshan University, Foshan 528000, Guangdong, China

Received date: 2013-10-31

  Revised date: 2013-12-10

  Online published: 2014-05-20

摘要

以岩溶地貌典型发育的桂西北为例,综合植被变化状况和驱动因子,采用聚类分析的方法将人类活动对植被干扰的强度进行分级评价。首先,采用直线斜率的方法对归一化植被指数(NDVI)和降水利用率(RUE)的变化趋势进行分析;其次,利用GIS技术,对NDVI变化趋势、RUE变化趋势和人口密度进行合成,并采用聚类分析的方法对其进行分类;然后,根据NDVI变化趋势和RUE变化趋势对各集群的人类干扰强度进行初步判断;最后,根据集群的人口密度值,修正各集群的地理属性,实现人类活动对植被干扰强度的分级评价。结果表明:(1)在区域尺度上,桂西北1999—2012年植被生长呈总体好转、局地退化的特征。(2)降水利用率大致呈现出从东南向西北递增的空间格局,1999—2012年植被降水利用率总体上呈略有上升的趋势,但空间上呈现出不均衡分布的特征。(3)1999—2012年桂西北人类活动对植被的影响总体是正向干扰效应大于负向干扰效应。人类活动正向干扰效应呈多中心非均衡分布特征,主要集中在以木论自然保护区和九万山自然保护区为中心的东北片区、金钟山自然保护区为中心的西北片区岑王老山自然保护区为中心的西部片区.负向干扰效应主要集中分布在东南部和西南部,以都安县和靖西县最为典型;中部地区人类活动对植被的影响并不明显,呈现出正向干扰效应和负向干扰效应零星分布的格局。(4)人类干扰主要集中在坡度25°以下区域,强度正向干扰主要分布在高程为400~1000 m的丘陵及低山区,强度负向干扰主要分布在高程400 m以下的中下坡、河谷盆地及峰丛洼地。

本文引用格式

李辉霞 , 周红艺 , 魏兴琥 . 基于RUE和NDVI的人类活动对植被干扰强度分析——以桂西北为例[J]. 中国沙漠, 2014 , 34(3) : 927 -937 . DOI: 10.7522/j.issn.1000-694X.2013.00393

Abstract

The impact of human disturbance on vegetation was classified and assessed based on vegetation variations and its driving factors using cluster analysis method, and a case study was conducted in Northwest Guangxi of China. First, the linear regression slope of NDVI and RUE from 1999 to 2012 was calculated to analyze the change trend. Second, three layers including the slope of NDVI, the slope of RUE, and population density were stacked using GIS technique, and the stacked layer was classified into 21 groups using cluster analysis method. Third, human disturbance intensity of each group was preliminarily judged based on the trend of NDVI and RUE. Finally, the groups were reclassified into seven grades based on population density. Results show that (1) At a regional scale, the vegetation in study area showed an overall improvement but local degradation trend from 1999 to 2012. (2) Annual RUE increased from southeast to northwest in space and showed an increasing trend in time. (3) Human activities have more positive effects than negative effects on vegetation in study area from 1999 to 2012. The distribution of the positive effects shows a multi-centered pattern, which includes northeast part with Mulun National Nature Reserve and Jiuwanshan National Nature Reserve as the center, northwest part with Jinzhongshan National Nature Reserve as the center, and west part with Wanglaoshan National Nature Reserve as the center. The negative effects are mostly distributed in southeast and southwest part especially in Duan county and Jingxi county. The positive and negative effects show a scattered distribution pattern in the middle part of study area and the intensity of human disturbance in this part are mostly classified into non-significant disturbance grade. (4) Human activities are mostly distributed in the areas with a slope of 25 below, high-intensified positive disturbances are concentrated in hill and low mountain areas with an elevation between 400 and 1000 meters, and high-intensified negative disturbances are concentrated in middle- or down-slope of the hills, valley basins, and Karst peak cluster-depression areas.

参考文献

[1] 熊康宁,黎平,周忠发,等.喀斯特石漠化的遥感——GIS典型研究[M ].北京:地质出版社,2002:25-44.
[2] 信忠保,许烔心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学),2007,37(11):1504-1514.
[3] 张戈,徐兴良,周才平,等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J].地理学报,2011,66(1):47-58.
[4] 蒙吉军,王钧.20世纪80年代以来西南喀斯特地区植被变化对气候变化的响应[J].地理研究,2007,26(5):857-865.
[5] 崔林丽,史军,杨引明,等.中国东部植被NDVI对气温和降水的旬响应特征[J].地理学报,2009,64(7):850-860.
[6] 彭飞,王涛,薛娴.基于RUE的人类活动对沙漠化地区植被影响研究——以科尔沁地区为例[J].中国沙漠,2010,30(4):896-902.
[7] 李辉霞,刘国华,傅伯杰.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J].生态学报,2011,31(19):5495-5504.
[8] 周洪建,王静爱,岳耀杰,等.人类活动对植被退化/恢复影响的空间格局——以陕西省为例[J].生态学报,2009,29(9):4847-4856.
[9] 董玉祥.土地沙漠化影响因子的定量分析[J].干旱区研究,1989,4:34-41.
[10] 李香云,杨君,王立新.干旱区土地荒漠化中人类因素分析[J].干旱区地理,2004,27(2):239-244.
[11] 蒋志荣,安力,柴成武.民勤县荒漠化影响因素定量分析[J].中国沙漠,2008,28(1):35-38.
[12] 王贵忠.利用主分量分析方法对沙漠化的研究[J].甘肃林业科技,2007,32(1):25-27.
[13] 李香云,王立新,章予舒.西北干旱区土地荒漠化中人类活动作用及其指标选择[J].地理科学,2004,24(1):68-75.
[14] 徐志刚,庄大方,杨琳.区域人类活动强度定量模型的建立与应用[J].地球信息科学学报,2009,11(4):452-460.
[15] 胡志斌,何兴元,李月辉,等,岷江上游地区人类活动强度及其特征[J].生态学杂志,2007,26(54):539-543.
[16] 张明阳,王克林,刘会玉,等.桂西北典型喀斯特区生态服务价值的环境响应及其空间尺度特征[J].生态学报,2011,31(14):3947-3955.
[17] 孙红雨,王长耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J].遥感学报,1998,2(3):205-210.
[18] Purevdorj T S,Tateishi R,Ishiyama T,et al.Relationships between percent vegetation cover and vegetation indices[J].Remote Sensing,1998,19(18):3519-3535.
[19] 张金龙,陈英,葛劲松,等.1977-2010年青海湖环湖区土地利用/覆盖变化与土地资源管理[J].中国沙漠,2013,33(4):1256-1266.
[20] Paruelo J M,Lauenroth W K,Burke I C,et al.Grassland precipitation-use efficiency varies across a resource gradient[J].Ecosystems,1999,(2):64-68.
[21] Prince S D.Satellite remote sensing of primary production: Comparison of results for Sahelian grasslands 1981-1988[J].International Journal of Remote Sensing,1991,12:1301-1311.
[22] Wessels K J,Prince S D,Frost P E,et al.Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1km AVHRR NDVI time-series [J].Remote Sensing of Environment,2004,91(1):47-67.
[23] 李辉霞,刘淑珍.基于ETM+影像的草地退化评价模型研究——以西藏自治区那曲县为例[J].中国沙漠,2007,27(3):412-418.
[24] Prince S D,De Colstoun E B,Kravitz L L.Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification[J].Global Change Biology,1998,4(4):359-374.
[25] Wessels K J,Prince S D,Malherbe J,et al.Can human-induced land degradation be distinguished from the effects of rainfall variability?A case study in South Africa[J].Journal of Arid Environments,2007,68:271-297.
[26] Bai Z G,Dent D.Recent land degradation and improvement in China[J].Ambio,2009,3:150-156.
[27] Fabricante I,Oesterheld M,Paruelo J M.Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia[J].Journal of Arid Environments,2009,73:745-753.
[28] Fensholt R,Rasmussen K.Analysis of trends in the Sahelian ‘rain-use efficiency' using GIMMS NDVI,RFE and GPCP rainfall data[J].Remote Sensing of Environment,2011,115:438-451.
[29] 张德昌.每步最优分级集群分类方法研究[J].华中工院学学报,1982,10(1):9-14.
[30] 杨绍锷,谭裕模,胡钧铭.基于NDVI的广西近十年植被变化特征分析[J].南方农业学报,2012,43(11):1783-1788.
[31] Paruelo J M,Epstein H E,Lauenroth W K,et al.ANPP estimates from NDVI for the central grassland region of the United States[J].Ecology,1997,78(3):953-958.
[32] Holm A M,Cridland S W,Roderick M L.The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrub land of Western Australia[J].Remote Sensing of Environments,2003,85:145-158.
[33] Pettorelli N,Vik J O,Mysterud A,et al.Using the satellite-derived NDVI to assess ecological responses to environmental change[J].Trends in Ecology and Evolution,2005,20(9):503-510.
[34] Lunetta R S,Knight J F,Ediriwickrema J,et al.Land-cover change detection using multi temporal MODIS NDVI data[J].Remote Sensing of Environment,2006,105:142-154.
[35] 李秀花,师庆东,常顺利,等.中国西北干旱区1981-2001年NDVI对气候变化的响应分析[J].中国沙漠,2009,29(5):989-994.
[36] Gao Z H,Li Z Y,Ding G D,et al.New approach for desertification assessment by remote sensing based upon rain use efficiency of vegetation[J].Science of Soil and Water Conservation,2005,3(2):37-41.
[37] 卓莉,曹鑫,陈晋,等.锡林郭勒草原生态恢复工程效果的评价[J].地理学报,2007,62(5):471-480.
文章导航

/