img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

高速铁路沿线短时大风预测方法

  • 王艺淋 ,
  • 李振山 ,
  • 曾秋兰
展开
  • 1. 北京大学 水沙科学教育部重点实验室/环境工程系, 北京 100871;
    2. 北京大学 环境与能源学院, 广东 深圳 518055
王艺淋(1988-),男,山西运城人,硕士研究生,主要研究方向为工程模拟。Email:wangyilin@iee.pku.edu.cn

收稿日期: 2013-05-08

  修回日期: 2013-06-07

  网络出版日期: 2014-05-20

基金资助

国家自然科学基金项目(41071005)资助

Prediction of Short-term Strong Wind along the High-speed Railways

  • Wang Yilin ,
  • Li Zhenshan ,
  • Zeng Qiulan
Expand
  • 1. Ministry of Education Key laboratory of Water and Sediment Sciences/Department of Environmental Engineering, Peking University, Beijing 100871, China;
    2. School of Environment and Energy, Peking University, Shenzhen 518055, Guangdong, China

Received date: 2013-05-08

  Revised date: 2013-06-07

  Online published: 2014-05-20

摘要

高速铁路沿线短时大风预测对于保障列车的安全运行至关重要。运行列车振动频率与侧风频率相同时所形成的共振极端情况,极易造成列车倾覆事故。通过分析列车的振动模态与侧风频率,建立了侧风共振简化模型,并运用阻尼振动方法得出列车典型倾覆时间为10 s。通过建立铁路在山丘后方和在三座呈品字形分布的山丘之间两种标准模型,以跃阶函数表示风场来流的变化,用以考察模型对来流变化的响应和地形因素对预测的影响。结果显示:基于格子玻尔兹曼的多观测点的准三维预测方法能够反映流场在变化来流中的响应以及地形对流场的影响。这种方法可能是解决大风预测问题的有效途径,值得深入研究。

本文引用格式

王艺淋 , 李振山 , 曾秋兰 . 高速铁路沿线短时大风预测方法[J]. 中国沙漠, 2014 , 34(3) : 861 -868 . DOI: 10.7522/j.issn.1000-694X.2013.00386

Abstract

Short-term strong wind prediction is essential for the secure operation of high-speed trains. The overturning accidents can be easily caused when the vibration frequency of the running trains meets the frequency of crosswind, then with which a simplified model was established on the condition of resonance frequency. The results show that the typical overturning time for high-speed trains is 10 s. To investigate the model responses of the vibration of incoming flow and the topographic factors in prediction, two standard models (railway behind the mountain and railway located among three mountains) were established, in which the waveform function is used to simulate the wind. The simulation results show that the Lattice-Boltzmann simulation method could reflect the changes in the flow field along the high-speed railway accurately and could also reflect the influence of topographic factors on the prediction. So the method might be an effective way to solve the forecast of strong wind along the high-speed railway in the future, and its worthy further investigation.

参考文献

[1] 丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34.
[2] 马晓洁,张春来,张加琼,等.包兰铁路沙坡头段防护体系前沿栅栏沙丘形态与近地面流场[J].中国沙漠,2013,33(3):649-654.
[3] 马国忠,张广兴,马玉芬.颠覆列车强风数值模式参数敏感性对比分析[J].中国沙漠,2010,30(6):1458-1463.
[4] 马玉芬,赵玲,赵勇.一次强天气过程天山地形方案的敏感性试验研究[J].中国沙漠,2012,32(4):1127-1134.
[5] 曾秋兰,李振山,卢傅安,等.高速公路透风型挡风墙不同位置防风特性的数值模拟研究[J].中国沙漠,2012,32(6):1542-1550.
[6] 刘新婷,修春波,张欣,等.基于混沌不稳定周期方法的风速时间序列预测[J].东南大学学报(自然科学版),2012,42(S1):78-81.
[7] Sfetsos A.A novel approach for the forecasting of mean hourly wind speed time series[J]. Renewable Energy,2002,27(2):163-174.
[8] Moura M D,Zio E,Lins I D,et al.Failure and reliability prediction by support vector machines regression of time series data[J].Reliability Engineering & System Safety,2011,96(11):1527-1534.
[9] 吕涛,唐巍,所丽.基于混沌相空间重构理论的风电场短期风速预测[J].电力系统保护与控制,2010,38(21):113-117.
[10] Mohandes M A,Rehman S,Halawani T O.A neural networks approach for wind speed prediction[J]. Renewable Energy,1998,13(3):345-354.
[11] Li G,Shi J.On comparing three artificial neural networks for wind speed forecasting[J]. Applied Energy,2010,87(7):2313-2320.
[12] Cao Q,Ewing B T,Thompson M A.Forecasting wind speed with recurrent neural networks[J].European Journal of Operational Research,2012,221(1):148-154.
[13] 潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.
[14] Louka P,Galanis G,Siebert N,et al.Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362.
[15] Liu H,Tian H Q,Li Y F.Comparison of two new arima-ann and arima-kalman hybrid methods for wind speed prediction[J].Applied Energy,2012,98:415-424.
[16] 周松林,茆美琴,苏建徽.基于小波分析与支持向量机的风速预测[J].太阳能学报,2012,33(3):452-456.
[17] 刘辉.铁路沿线风信号智能预测算法研究[D].长沙:中南大学,2011.
[18] 刘辉,潘迪夫,李燕飞.基于列车运行安全的青藏铁路大风预测优化模型与算法[J].武汉理工大学学报(交通科学与工程版),2008,32(6):986-989.
[19] 常晓东,常晓磊.基于专家系统和神经网络的高铁风灾预警算法[J].实验技术与管理,2010,27(3):97-99.
[20] 郝鲁波.客车模态计算与试验研究[D].大连:大连理工大学,2005.
[21] 马静,张杰,杨志刚.横风下高速列车非定常空气动力特性研究[J].铁道学报,2008,30(6):109-114.
[22] 王修琼,崔剑峰.Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报(自然科学版),2002,30(7):849-852.
[23] 关华,朱忠义,牟在根.利用Davenport谱求解荷载风振系数[C]//第九届全国现代结构工程学术研讨会论文集.济南,2009:593-597.
[24] 李鹏飞.脉动风特性及其对桥梁主梁断面的抖振作用研究[D].上海:同济大学,2007.
[25] 姚应峰.横风作用下200 km/h动车组安全性研究[D].成都:西南交通大学,2008.
[26] Chen Y,Teng S L,Shukuwa T,et al.Lattice-Boltzmann simulation of two-phase fluid flows[J].International Journal of Modern Physics C:Computational Physics and Physical Computation,1998,9(8):1383-1391.
[27] 王洋.基于格子玻尔兹曼方法的高速列车气动性能数值计算[D].北京:北京大学,2008.
文章导航

/