中国戈壁面积约66.08万km2,超过了流动沙丘和半固定沙丘的面积之和,但目前对戈壁沉积特征的研究程度相对较低。本文采用ImageJ软件,对中国西北地区戈壁原位无干扰的表面数字图像进行量算,获取了砾石覆盖度、粒径、磨圆度和形状比率等形貌参数。结果表明:中国西北地区戈壁表面的砾石覆盖度介于31.5%~84.6%,以中覆盖度为主,70%的戈壁属于空气动力学稳定表面;90%以上的戈壁表面砾石平均粒径为细砾和中砾。不同区域戈壁表面砾石磨圆度的平均值介于0.50~0.76,形状比率变化范围在1.38~2.46。戈壁表面砾石形貌特征与其成因类型密切相关:以剥蚀(侵蚀)-洪积作用为主形成的戈壁,砾石粒径较粗、形态比率较大、磨圆度低、覆盖度较高;以冲洪积为主形成的戈壁,砾石粒径和形态比率变小,磨圆度变好而覆盖度降低。砾石形貌特征可为追溯戈壁物源区和反演沉积物的搬运堆积过程提供参考。
Gobi (deseret pavement) occupies an area about 660800 km2 which is more than the total areas of mobile and semi-fixed sandy lands in China. However, the research of the sedimentary characteristics of gobi is not comparable to its extensive distribution. In this paper, we analyzed the morphometric features (such as the gravel coverage, grain size, roundness and aspect ratio, etc.) which were derived from the digital images of in-situ, undisturbed gobi surfaces by means of particle tracking with ImageJ software. In the northwestern China, the gravel coverage of different gobi surfaces ranges between 31.5%-84.6% and most of the surfaces are moderately covered by gravels. Aerodynamically, 70% of the gobi surface is stable and non-eroded by wind. According to the mean grain size, the gobi surfaces are mainly composed of fine to medium gravels. The roundness and aspect ratio of gravels vary with gobi types, the mean values of the two parameters change from 0.50 to 0.76 and from 1.38 to 2.46, respectively. The gravel morphometric features of different gobi surfaces are closely related to their erosional/depositional processes. The gobi surfaces which composed of denuded or weathered fragments and diluvial deposits are characterized by larger grains and aspect ratio, bad rounded and high gravel coverage. Otherwise, the fluvial-proluvial gobi surfaces have smaller grain size and aspect ratio, better rounded and low gravel coverage. The morphometic characteristics of gravels derived from these digital images could provide some useful significance to determining the source region of gobi deposits and to interpreting the transport/deposition processes.
[1] 赵松乔.河西走廊西北部戈壁类型及其改造利用的初步探讨[M]//中国科学院治沙队.治沙研究(第三号).北京:科学出版社,1962:78-89.
[2] 格拉西莫夫 ип,王乃樑,陈静生,等.戈壁荒漠[J].地理学报,1955,(2):129-140.
[3] 朱震达,吴正,刘恕,等.中国沙漠概论[M].北京:科学出版社,1980:107.
[4] Livingstone I,Warren A.Aeolian Geomorphology:An Introduction[M].Harlow,UK:Longman,1996:211.
[5] 王贵勇,董光荣,李森,等.试论戈壁面及指相意义[J].中国沙漠,1995,15(2):124-130.
[6] 冯益明,吴波,周娜,等.基于遥感影像识别的戈壁分类体系研究[J].中国沙漠,2013,33(3):635-641.
[7] 国家林业局.中国荒漠化和沙化状况公报[R].北京,2011.
[8] 王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003:955.
[9] 赵松乔.赵松乔文集[M].北京:科学出版社,1998:482.
[10] Cooke R U,Warren A,Goudie A.Desert Geomorphology[M].London,UK:UCL Press,1993:526.
[11] Bockheim J B.Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains[J].Geomorphology,2010,118(3/4):433-443.
[12] Mcfadden L D,Ritter J B,Wells S G.Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont,eastern Mojave Desert,California[J].Quaternary Research,1989,32(3):276-290.
[13] 董治宝,屈建军,刘小平,等.戈壁表面阻力系数的实验研究[J].中国科学(D辑:地球科学),2001,(11):953-958.
[14] 王训明,郎丽丽,花婷,等.戈壁砾石覆盖度与风蚀强度关系实验研究[J].中国沙漠,2013,33(2):313-319.
[15] Mcfadden L D,Mcdonald E V,Wells S G,et al.The vesicular layer and carbonate collars of desert soils and pavements:formation,age and relation to climate change[J].Geomorphology,1998,24(2/3):101-145.
[16] 张克存,张伟民,屈建军,等.不同砾石盖度戈壁床面动力学特征研究[J].干旱区研究,2012,(6):1077-1082.
[17] 张伟民,王涛,汪万福,等.复杂风况条件下戈壁输沙量变化规律的研究[J].中国沙漠,2011,31(3):543-549.
[18] 屈建军,黄宁,拓万全,等.戈壁风沙流结构特性及其意义[J].地球科学进展,2005,(1):19-23.
[19] 邹学勇,董光荣,王周龙.戈壁风沙流若干特征研究[J].中国沙漠,1995,15(4):368-373.
[20] 刘小平,董治宝.砾石床面的空气动力学粗糙度[J].中国沙漠,2003,23(1):40-47.
[21] Walton W H.Ferets statistical diameter as a measure of particle size[J].Nature,1948,162:329-330.
[22] Merkus D H G.Particle Size Measurements[M].Dordrecht,Netherlands:Springer,2009:533.
[23] Wentworth C K.A scale of grade and class terms for clastic sediments[J].Journal of Geology,1922,30(5):377-392.
[24] 任明达,王乃梁.现代沉积环境概论[M].北京:科学出版社,1981:231.
[25] Nichols G D.Sedimentology and Stratigraphy[M].Chichester,UK:Wiley-Blackwell,2009:419.
[26] Francus P.Image Analysis,Sediments and Paleoenvironments[M].Dordrecht,Netherlands:Springer,2005:330.
[27] 赵松乔.中国沙漠、戈壁的形成和演变[M]//赵松乔.中国干旱地区自然地理.北京:科学出版社,1985:1-17.
[28] 董治宝,苏志珠,钱广强,等.库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011:484.
[29] Rostagno C M,Degorgue G.Desert pavements as indicators of soil erosion on aridic soils in north-east Patagonia (Argentina)[J].Geomorphology,2011,134(3/4):224-231.
[30] Mcfadden L D,Wells S G,Jercinovich M J.Influences of eolian and pedogenic processes on the origin and evolution of desert pavements[J].Geology,1987,15(6):504-508.
[31] Wells S G,Mcfadden L D,Poths J,et al.Cosmogenic 3He surface-exposure dating of stone pavements:implicat ions for landscape evolution in deserts[J].Geology,1995,23(7):613-616.
[32] Moores J E,Pelletier J D,Smith P H.Crack propagation by differential insolation on desert surface clasts[J].Geomorphology,2008,102(3/4):472-481.
[33] Mcfadden L D,Eppes M C,Gillespie A R,et al.Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating[J].Geological Society of America Bulletin,2005,117(1/2):161-173.