img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

柴达木盆地几种荒漠灌丛植被的生物量分配格局

  • 钟泽兵 ,
  • 周国英 ,
  • 杨路存 ,
  • 刘何春 ,
  • 宋文珠
展开
  • 1. 中国科学院西北高原生物研究所, 青海 西宁 810001;
    2. 中国科学院大学, 北京 100049
钟泽兵(1987-),男,湖北十堰人,硕士研究生,主要从事高寒灌丛碳储量及其动态研究。Email:zhuobufanzzb@gmail.com

收稿日期: 2013-05-16

  修回日期: 2013-07-09

  网络出版日期: 2014-07-20

基金资助

国家重点基础研究发展计划项目(2012CB026105);中国科学院战略性先导科技专项(XDA0505030304)资助

The Biomass Allocation Patterns of Desert Shrub Vegetation in the Qaidam Basin, Qinghai, China

  • Zhong Zebing ,
  • Zhou Guoying ,
  • Yang Lucun ,
  • Liu Hechun ,
  • Song Wenzhu
Expand
  • 1. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-05-16

  Revised date: 2013-07-09

  Online published: 2014-07-20

摘要

选择柴达木盆地的8种荒漠灌丛为研究对象,利用样方收获法对生物量及其分配格局进行了研究。结果表明:柴达木盆地荒漠灌丛生物量的空间分布具有高度异质性,介于11.11~58.63 t·hm-2,平均为27.15 t·hm-2。灌木层生物量是整个荒漠生态系统最重要的生物量组分,占总生物量的92.71%。灌木层地上生物量的变幅为7.93~46.10 t·hm-2,地下生物量的变幅为1.15~25.64 t·hm-2。地上生物量远大于地下生物量,根冠比介于0.07~2.45。几种荒漠植被的生物量在各个器官间分配格局为:枝生物量>根生物量>叶生物量,分别占建群种生物量的比例为38.05%、34.92%、27.03%。影响柴达木生物量及其分配的因子主要是灌木的高度及土壤含水量。

本文引用格式

钟泽兵 , 周国英 , 杨路存 , 刘何春 , 宋文珠 . 柴达木盆地几种荒漠灌丛植被的生物量分配格局[J]. 中国沙漠, 2014 , 34(4) : 1042 -1048 . DOI: 10.7522/j.issn.1000-694X.2013.00406

Abstract

Investigation of spatial distribution of biomass of shrub in desert and desertified regions is essential to evaluate carbon storage in desert ecosystem. In this paper, spatial patterns of desert shrub biomass were studied based on data from sites in the Qaidam Basin, by using quadrat harvest method. We found that spatial distribution of desert shrub biomass is highly spatial heterogeneous in desert regions of the basin, which ranges from 11.11 t·5hm-2 to 58.36 t·5hm-2, with an average of 27.15 t·5hm-2. The shrub layer biomass is the most important component of the total biomass in the terrestrial ecosystem, which accounts for 92.91% of the total biomass. The aboveground biomass is much larger than the belowground biomass, the aboveground biomass is 7.93-46.10 t·5hm-2, and the belowground biomass is 1.15-25.46 t·5hm-2, and the ratio of root to shoot ranges from 0.07 to 2.45. The vegetation biomass in desert varies in different organs, generally speaking, the biomass in branch and stem were larger than in root, and the biomass in foliage is the smallest (38.05%, 34.92%, 27.03%, respectively). The main factors that affect the vegetation biomass and its allocation are shrub height and soil moisture.

参考文献

[1] 李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
[2] 鄢燕,张建国,张锦华,等.西藏那曲地区高寒草地地下生物量[J].生态学报,2005,25(11):2818-23.
[3] Bazzaz F A,Grace J.Plant Resource Allocation[M].New York,USA:Academic Press,1997.
[4] Shipley B,Meziane D.The balanced-growth hypothesis and the allometry of leaf and root biomass allocation[J].Functional Ecology,2002,16(3):326-331.
[5] Coupland R T.Natural Grasslands:Introduction and Western Hemisphere[M].New York,USA:Elsevier Science Publishers,1992.
[6] Litton C M,Raich J W,Ryan M G.Carbon allocation in forest ecosystems[J].Global Change Biology,2007,13(10):2089-2109.
[7] 曹光球,吴淑芳.几个树种枝叶水浸液处理杉木6年后其生物量及分配[J].西北植物学报,2002,22(4):894-899.
[8] 潘辉,洪伟,陈国荣,等.相思人工林生物量分配格局与林下植被多样性分析[J].福建林业科技,2008,35(1):6-10.
[9] 杨允菲,张宝田.松嫩平原蒙古蒿种群无性系分株的生长与生物量分配规律[J].草业学报,2003,12(1):11-7.
[10] 王娓,彭书时,方精云.中国北方天然草地的生物量分配及其对气候的响应[J].干旱区研究,2008,25(1):90-7.
[11] 李红丽,智颖飙,雷光春,等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局[J].生态学报,2009,29(7):3525-3531.
[12] 雷蕾,刘贤德,王顺利,等.祁连山高山灌丛生物量分配规律及其与环境因子的关系[J].生态环境学报,2011,20(11):1602-1607.
[13] 巩合德,程希平,马月伟.云南杨梅灌丛生物量的分配特征[J].经济林研究,2012,30(4):106-108.
[14] 纪晓林,刘乐乐,李强,等.燕山北部山地绣线菊灌丛生物量研究[J].河北林果研究,2012,27(2):206-209.
[15] 李卫红,周洪华,杨晓明,等.干旱荒漠区草地植物群落地上生物量时空分布对地下水的响应[J].草业学报,2010,19(5):186-195.
[16] 杨昊天,李新荣,刘立超,等.荒漠草地4种灌木生物量分配特征[J].中国沙漠,2013,33(5):1340-1348.
[17] 倪永明,欧阳志云.新疆荒漠生态系统分布特征及其演替趋势分析[J].干旱区资源与环境,2006,20(2):7-10.
[18] 李新荣,谭会娟,何明珠,等.阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应:极端干旱荒漠地区灌木多样性保育的前提[J].中国科学:D辑,2009,39(4):504-515.
[19] 周志宇,颜淑云,秦彧,等.阿拉善干旱荒漠区灌木多样性的特点[J].干旱区资源与环境,2009,23(9):146-150.
[20] Garner W,Steinberger Y.A proposed mechanism for the formation of fertile islands in the desert ecosystem[J].Journal of Arid Environments,1989,16(3):257-262.
[21] 程军回,张元明.水分胁迫下荒漠地区2种草本植物生物量分配策略[J].干旱区研究,2012,29(3):432-439.
[22] 单玲.芦苇生物量及其土壤碳氮垂直分布规律性的研究[D].乌鲁木齐:新疆大学,2007.
[23] Houghton R A,Hall F,Goetz S J.Importance of biomass in the global carbon cycle[J].Journal of Geophysical Research,2009,114:1-113.
[24] Cramer W,Bondeau A,Woodward F I.Global response of terrestrial ecosystem structure and function to CO-2 and climate change:results from six dynamic global vegetation models[J].Global Change Biology,2001,7(4):357-373.
[25] Búrquez A,Martínez-Yrízar A,Núñez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting [J].Journal of Arid Environments,2010,74(10):1240-1247.
[26] Chapin III F S,Matson P A,Mooney H A.Principles of terrestrial ecosystem ecology[M].New York,USA:Springer-Verlag,2002.
[27] 吴波,苏志珠,陈仲新.中国荒漠化潜在发生范围的修订[J].中国沙漠,2007,27(6):911-917.
[28] 杜庆,孙世洲.植物生态学.柴达木地区植被及其利用[M].北京:科学出版社,1990.
[29] 刘燕华.柴达木盆地水资源合理开发利用与生态环境保护[M].北京:科学出版社,2000.
[30] 赵串串,胡慧,董旭,等.柴达木盆地土地荒漠化生态安全评价[J].林业调查规划,2009,34(4):22-25.
[31] 于海洋,张振德,张佩民.青海土地荒漠化评价及动态监测[J].干旱区研究,2007,24(2):153-158.
[32] Pallard Y S.Closely related woody plants[M]//Kozlowski T T.Water Deficits and Plant Growth.New York,USA:Academic Press,1981,6.
[33] Chapin iii F S,Autumn K,Pugnaire F.Evolution of suites of traits in response to environmental stress[J].American Naturalist,1993:78-92.
[34] 崔夺,李玉霖,王新源,等.北方荒漠及荒漠化地区草地地上生物量空间分布特征 [J].中国沙漠,2011,31(4):868-872.
[35] Jin Z,Qi Y C,Dong Y S.Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia,China[J].Journal of Forestry Research,2007,18(4):298-300.
文章导航

/