img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

高光谱指数法用于确定多枝柽柳(Tamarix ramosissima)蒸腾速率

  • 王珊珊 ,
  • 陈曦 ,
  • 周可法 ,
  • 王重
展开
  • 1. 中国科学院新疆生态与地理研究所, 新疆 乌鲁木齐 830011;
    2. 新疆农业科学院 核技术生物技术研究所, 新疆 乌鲁木齐 830091
王珊珊(1982-),女,新疆乌鲁木齐人,博士,助理研究员,从事定量遥感信息提取和地理信息系统应用等方面的研究。Email:wangss0509@163.com

收稿日期: 2014-03-19

  修回日期: 2014-06-01

  网络出版日期: 2014-07-20

基金资助

中国科学院“西部之光”人才培养计划西部博士专项资助项目(XBBS201203);青年科技创新人才培养工程项目(2013731027);国家自然科学青年基金项目(41101429);中国科学院和国家外国专家局创新团队项目资助

A Preliminary Study on the Transpiration Rate Based on High Spectral Index Method for Tamarix ramosissima in the Southern Periphery of the Gurbantunggut Desert

  • Wang Shanshan ,
  • Chen Xi ,
  • Zhou Kefa ,
  • Wang Zhong
Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. Xinjiang Institute of Nuclear and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

Received date: 2014-03-19

  Revised date: 2014-06-01

  Online published: 2014-07-20

摘要

蒸腾速率(Tr)是植物生理生态学研究中表征蒸腾耗水的常用指标,研究植物的蒸腾耗水有助于了解当地生态系统稳定性和水资源的可持续利用,但在遥感应用尤其在干旱区遥感应用中很少被使用。本文以古尔班通古特沙漠南缘的主要建群种多枝柽柳(Tamarix ramosissima)作为研究对象,应用高光谱指数法对其Tr日变化过程进行研究,寻找和确定最佳的Tr光谱指数。选择的6个光谱指数判定系数R2介于0.06~0.73,其中简单比值(SR)光谱指数有最高的判定系数(R2=0.73)、较低的均方根误差(RMSE=0.24)和较为简单的形式,光谱范围处于近红外波段(1 645~1 655 nm)/(1 775~1 785 nm)。SR作为Tr最佳光谱指数,对植被水分关系变化敏感,能够较好地记录和监测Tr日变化过程,有益于揭示光谱指数物理和生理机制。

本文引用格式

王珊珊 , 陈曦 , 周可法 , 王重 . 高光谱指数法用于确定多枝柽柳(Tamarix ramosissima)蒸腾速率[J]. 中国沙漠, 2014 , 34(4) : 1023 -1030 . DOI: 10.7522/j.issn.1000-694X.2013.00403

Abstract

Water availability is one of the most important factors limiting photosynthetic assimilation of carbon dioxide and growth of individual plants in terrestrial ecosystems. Transpiration rate (Tr) of plants has been widely assessed using ecological methods in field measurements; however, approaches for remote sensing Tr are still lacking, particularly in arid ecosystems. In this study, a comprehensive analysis of diurnal Tr via spectral indices in arid ecosystems was assessed. Analyses were conducted on a native dominant desert shrub, Tamarix ramosissima, in its original habitat on the southern periphery of the Gurbantunggut Desert, China. Based on diurnal measurements of spectral reflectance, photosynthesis, and micrometeorological variables, simple and useful spectral indices for estimating diurnal Tr at the assimilative organ scale were explored. From six types of spectral indices, ranging from simple to sophisticated, the best wavelength domains for a given type of index were determined by screening all combinations using correlation analysis. The coefficient of determination (R2), ranging from 0.06 to 0.73, for Tr was calculated for all indices derived from spectra taken from the assimilative organs. With only two wavelengths and a significant correlation coefficient (R2=0.73), the Simple Ratio (SR) type index was the most sensitive to Tr among all of the indices. Determine the best ranges of SR type index band are Near-infrared band (1 645-1 655 nm) and (1 775-1 785 nm), which are sensitive to changes water relations of vegetation. Furthermore, SR is a useful indicator to determine the dynamic and diurnal processes of transpiration of T. ramosissima. Therefore, SR makes a preliminary attempt of Tr for simple and fast access to large scale water consumption.

参考文献

[1] 周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(6):49-55.
[2] 闫海龙,张希明,许浩,等.塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J].中国沙漠,2007,27(3):460-466.
[3] Xu H,Li Y,Xu G,et al.Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation[J].Plant,Cell and Environment,2007,30(4):399-409.
[4] 付爱红,李卫红,陈亚宁.极端干旱区多枝柽柳茎水势变化影响因子分析[J].中国沙漠,2012,32(3):730-737.
[5] Moya I,Camenen L,Evain S,et al.A new instrument for passive remote sensing 1.measurements of sunlight-induced chlorophyll fluorescence[J].Remote Sensing Environment,2004,91(2):186-197.
[6] Pu R,Ge S,Kelly N M,et al.Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J].International Journal of Remote Sensing,2003,24(9):1799-1810.
[7] Ebbers M J H,Wallis I R,Dury S,et al.Spectrometric prediction of secondary metabolites and nitrogen in fresh Eucalyptus foliage:towards remote sensing of the nutritional quality of foliage for leaf-eating marsupials[J].Australia Journal of Botany,2002,50(6):761-768.
[8] Penuelas J,Filella I,Biel C,et al.The reflectance at the 950-970 nm region as an indicator of plant water status[J].International Journal of Remote Sensing,1993,14(10):1887-1905.
[9] Gao B C.NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.
[10] Jayaraman V,Srivastava S K.The invariance of red-edge inflection wavelengths derived from ground based spectro-radiometer and space-borne IRS-P3:MOS-B data[J].International Journal of Remote Sensing,2002,23(14):2741-2765.
[11] 王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107.
[12] 张立运,尹林克,张道远,等.新疆柽柳属植物(Tamarix L.)的分布与群落相似性聚类分析[J].干旱区研究,2002,19(3):6-11.
[13] 公维昌,庄丽,赵文勤,等.多枝柽柳与梭梭光合器官形态解剖结构的生态适应性[J].中国沙漠,2011,31(1):129-137.
[14] 曾凡江,Andrea Foetzki,李向义.策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J].应用生态学报,2002,13(7):849-853.
[15] Callister A N,Arndt S K,Adams M A.Comparison of four methods for measuring osmotic potential of tree leaves[J].Physiological Plantarum,2006,127(3):383-392.
[16] 闫海龙,张希明,许浩,等.塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J].中国沙漠,2007,27(3):460-466.
[17] 谭会娟,周海燕,李新荣,等.珍稀濒危植物半日花光合作用日动态变化的初步研究[J].中国沙漠,2005,25(2):262-268.
[18] Heschel M S,Donohue K,Hausmann N,et al.Population differentiation and natural selection for water-use efficiency in Impatiens capensis (Balsaminaceae)[J].International Journal of Plant Science,2002,63(6):907-912.
[19] 刘冰,赵文智.荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性[J].中国沙漠,2009,29(1):101-108.
[20] 蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠,2008,28(6):1118-1125.
[21] Hansen P M,Schjoerring J K.Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J].Remote Sensing of Environment,2003,86(4):542-553.
[22] Inoue Y,Penuelas J,Miyata A,et al.Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice[J].Remote Sensing of Environment,2008,112(1):156-172.
[23] Ceccato P,Gobron N,Flasse S,et al.Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1-theoretical approach[J].Remote Sensing of Environment,2002,82(2/3):188-197.
[24] Danson F M,Steven M D,Malthus T J,et al.High-spectral resolution data for determining leaf water content[J].International Journal of Remote Sensing,1992,13(3):461-470.
[25] Stimson H C,Breshears D D,Ustin S L,et al.Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma[J].Remote Sensing of Environment,2005,96(1):108-118.
[26] Harris A,Bryant R G,Baird A J.Detecting near-surface moisture stress in Sphagnum spp[J].Remote Sensing of Environment,2005,97(3):371-381.
文章导航

/