img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

甘肃省河东地区气象干旱灾害风险评估与区划

  • 王莺 ,
  • 王劲松 ,
  • 姚玉璧
展开
  • 1. 中国气象局兰州干旱气象研究所 甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室, 甘肃 兰州 730020;
    2. 定西市气象局, 甘肃 定西 743003
王莺(1984-),女,甘肃兰州人,博士,助理研究员,主要从事气候变化对农业生态的影响研究。Email:wangyn924@163.com

收稿日期: 2013-08-04

  修回日期: 2013-09-04

  网络出版日期: 2014-07-20

基金资助

国家重点基础研究发展计划项目(2013CB430206);国家重大科学研究计划项目(2012CB955903);中国清洁发展机制基金项目(“面向适应的气候灾害风险评估与管理机制研究”);甘肃省气象局气象科学技术研究项目(2014-14);中国气象局兰州干旱气象研究所博士科研启动项目(KYS2012BSKYO2);中央级公益性科研院所基本科研业务费专项资金项目(KYYWF201317)资助

Assessment and Regionalization on Meteorological Drought Disaster Risk in the Hedong Area of Gansu Province, China

  • Wang Ying ,
  • Wang Jinsong ,
  • Yao Yubi
Expand
  • 1. Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Change and Disaster Reduction of CMA, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China;
    2. Meteorological Bureau of Dingxi, Dingxi 743003, Gansu, China

Received date: 2013-08-04

  Revised date: 2013-09-04

  Online published: 2014-07-20

摘要

干旱灾害是世界上危害最为严重的自然灾害之一。通过对干旱灾害风险成因的深入分析,结合灾害学理论,从干旱灾害的致灾因子危险性、孕灾环境脆弱性、承灾体暴露性和防灾减灾能力等4个方面入手,构建干旱灾害风险评估模型,然后依据甘肃省河东地区相关气象、生态和社会经济数据,在GIS平台下将干旱灾害的自然属性和社会属性统一起来进行干旱灾害风险评估与区划。结果表明:(1)研究区致灾因子危险性等级有自中部向东西两边逐渐降低的趋势,7个地区中干旱灾害危险性自大到小依次是天水、平凉、陇南、定西、临夏、甘南和庆阳。(2)研究区孕灾环境脆弱性有自北向南逐渐降低的趋势,脆弱性自大到小依次是庆阳、临夏、定西、平凉、天水、甘南和陇南。(3)研究区承灾体暴露性自大到小依次是天水、平凉、临夏、定西、陇南、庆阳和甘南。(4)防灾减灾能力自大到小依次是临夏、天水、平凉、定西、陇南、庆阳、甘南。(5)河东地区自北向南干旱灾害风险逐渐降低,干旱风险自大到小依次是定西、天水、庆阳、平凉、临夏、甘南和陇南。

本文引用格式

王莺 , 王劲松 , 姚玉璧 . 甘肃省河东地区气象干旱灾害风险评估与区划[J]. 中国沙漠, 2014 , 34(4) : 1115 -1124 . DOI: 10.7522/j.issn.1000-694X.2013.00358

Abstract

Drought disaster is one of the most hazardous natural disasters on earth. Through the in-depth analysis of causes of drought risk, combined with the principles of natural disaster system, a drought disaster risk assessment model was constructed according to the dangerousness of disaster-inducing factors, vulnerability of disaster-breeding environment, exposure of disaster-bearing body, and disaster prevention and mitigation capabilities. Then, an assessment and regionalization of drought risk was conducted in Hedong area of Gansu Province with ArcGIS platform by integrated consideration of the natural and social characteristics of drought disaster, based on local meteorological, ecological and socio-economic data. The results showed that: (1) The dangerousness of disaster-inducing factors decreases gradually from the middle to both west and east sides of Hedong area, and from large to small is Tianshui, Pingliang, Longnan, Dingxi, Linxia, Gannan and Qingyang. (2) The vulnerability of disaster-breeding environment decreases gradually from north to sourth, and from large to small is Qingyang, Linxia, Dingxi, Pingliang, Tianshui, Gannan and Longnan. (3) The exposure of disaster-bearing body is the highest in Tianshui, followed by Pingliang, Linxia, Dingxi, Longnan, Qingyang and Gannan. (4) The disaster prevention and mitigation capabilities from large to small is Linxia, Tianshui, Pingliang, Dingxi, Longnan, Qingyang and Gannan. (5) The meteorological drought disaster risk decreases from north to south and the highest in Dingxi, followed by Tianshui, Qingyang, Pingliang, Linxia, Gannan and Longnan.

参考文献

[1] 亚行支援中国干旱管理战略研究课题组.中国干旱灾害风险管理战略研究[M].北京:中国水利水电出版社,2011:4-5.
[2] 李中锋,刘昌明,王红瑞.构建干旱防备系统-减免干旱灾害损失[J].中国水利,2011,(6):75-79.
[3] IPCC.Climate Change 2007:Impacts,Adaptation and Vulnerability[R].London,UK:Cambridge University Press,2007.
[4] IPCC.Climate Change 2001:Impacts,Adaptation and Vulnerability of Climate Change [M].London,UK:Cambridge University Press,2001.
[5] 贾慧聪,王静爱.国内外不同尺度的旱灾风险评价研究进展[J].自然灾害学报,2011,20(2):138-145.
[6] 杨帅英,郝芳华,宁大同.干旱灾害风险评估的研究进展[J].安全与环境学报,2004,4(2):79-82.
[7] 姜逢清,朱诚,胡汝骥.新疆1950-1997年洪旱灾害的统计与分形特征分析[J].自然灾害学报,2002,11(4):96-100.
[8] 张竟竟.河南省农业水旱灾害风险评估与时空分布特征[J].农业工程学报,2012,28(18):98-106.
[9] 王莺,李耀辉,赵福年,等.基于信息扩散理论的甘肃省农业旱灾风险分析[J].干旱气象,2013,31(1):43-48.
[10] 任鲁川.灾害熵:概念引入及应用案例[J].自然灾害学报,2000,9(2):26-31.
[11] 陈晓楠,段春青,刘昌明,等.基于两层土壤计算模式的农业干旱风险评估模型[J].农业工程学报,2009,25(9):51-55.
[12] 罗培.基于GIS的重庆市干旱灾害风险评估与区划[J].中国农业气象,2007,28(1):100-104.
[13] 许玲燕,王慧敏,陈军飞.基于Copula-EVT模型的干旱灾害风险评估[J].数理统计与管理,2013,32(2):284-294.
[14] 陶健红,王遂缠,王宝鉴.中国西北地区气温异常的特征分析[J].干旱区研究,2007,24(4):510-515.
[15] 李爽,王羊,李双成.中国近30年气候要素时空变化特征[J].地理研究,2009,28(6):1593-1605.
[16] 陆登荣,黄斌,王劲松.甘肃河东雨养农业区旬降水变化及其与土壤湿度关系[J].干旱地区农业研究,2011,29(2):230-235.
[17] 李栋梁,谢金南,王蕾,等.甘肃河东年降水量的周期变化[J].高原气象,2000,19(3):295-303.
[18] 尤志刚,李栋梁,赵小强.甘肃河东地区伏期气温特征和异常分析[J].甘肃气象,2000,(2):20-23.
[19] 黄会平,张岑.分类、分级模型与GIS集成的探讨[J].华北水利水电学院学报,2007,28(3):72-74.
[20] 李美娟,陈国宏,陈衍泰.综合评价中指标标准化方法研究[J].中国管理科学,2004,12(10):45-47.
[21] 邹旭恺,张强.近半个世纪我国干旱变化的初步研究[J].应用气象学报,2008,19(6):679-687.
[22] 刘晓梅,李晶,吕志红,等.近50年辽宁省干旱综合指数的动态变化[J].生态学杂志,2009,28(5):938-942.
[23] Saaty T L.What Is the Analytic Hierarchy Process?[M].Berlin,Germany:Springer,1988:109-121.
[24] Heim Jr R R.A review of twentieth-century drought indices used in the United States[J].Bulletin of American Meteorological Society,2002,83(8):1149-1165.
[25] 张强,鞠笑生,李淑华.三种干旱指标的比较和新指标的确定[J].气象科技,1998,(2):48-52.
[26] 刘卫国,王曼,丁俊祥,等.帕默尔干旱指数在天山北坡典型绿洲干旱特征分析中的适用性[J].中国沙漠,2013,33(1):249-257.
[27] Quiring S M,Papakryiakou T N.An evaluation of agricultural drought indices for the Canadian prairies[J].Agricultural and Forest Meteorology,2003,118(1):49-62.
[28] 王素艳,郑广芬,杨洁,等.几种干旱评估指标在宁夏的应用对比分析[J].中国沙漠,2012,32(2):517-524.
[29] Sims A P,Niyogi D D S,Raman S.Adopting drought indices for estimating soil moisture:a North Carolina case study[J].Geophysical Research Letters,2002,29(8):24-1-24-4.
[30] 刘晓云,李栋梁,王劲松.1961—2009年中国区域干旱状况的时空变化特征[J].中国沙漠,2012,32(2):473-483.
[31] 陈才,王振亚,程媛华,等.北方半干旱区的PDSI和SPI比较研究[J].安徽农业科学,2012,40(5):2778-2780,2856.
[32] Hayes M J,Svoboda M,Wilhite D A,et al.Monitoring the 1996 drought using the standardized precipitation index[J].Bulletin of American Meteorogical Society,1999,80(3):429-438.
[33] 车少静,李春强,申双和.基于SPI的近41年(1965-2005)河北省旱涝时空特征分析[J].中国农业气象,2010,31(1):137-143.
[34] 邵进,李毅,宋松柏.基于SPI模型的江汉平原旱涝分布及其变化规律的研究[J].水文,2012,32(2):34-39.
[35] Wu H,Svoboda M D,Hayes M J,et al.Appropriate application of the standardized precipitation index in arid locations and dry seasons[J].International Journal of Climatology,2007,27(1):65-79.
[36] Patel N R,Chopra P,Dadhwal V K.Analyzing spatial patterns of meteorological drought using standardized precipitation index[J].Meteorological Applications,2007,14(4):329-336.
[37] Vicente-Serrano S M.Spatial and temporal analysis of droughts in the Iberian Peninsula (1910-2000)[J].Hydrological Sciences Journal,2006,51(1):83-97.
[38] 国家气候中心,中国气象科学研究院,国家气象中心,等.GB/T 20481-2006气象干旱等级[S].北京:中国标准出版社,2006.
[39]Łabędzki L.Estimation of local drought frequency in central Poland using the standardized precipitation index SPI[J].Irrigation and Drainage,2007,56(1):67-77.
[40] Eastwood J A,Yates M G,Thomson A G,et al.The reliability of vegetation indices for monitoring saltmarsh vegetation cover[J].International Journal of Remote Sensing,1997,18(18):3901-3907.
文章导航

/