img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

沙漠与城市气溶胶散射系数变化比较

  • 彭艳梅 ,
  • 何清 ,
  • 刘新春 ,
  • 王舒 ,
  • 高磊
展开
  • 1. 新疆维吾尔自治区气象服务中心, 新疆 乌鲁木齐 830002;
    2. 中国气象局乌鲁木齐沙漠气象研究所 新疆树木年轮生态实验室/中国气象局树轮年轮理化研究重点开放实验室/塔克拉玛干沙漠大气环境观测试验站, 新疆 乌鲁木齐 830002
彭艳梅(1987-),女,重庆人,助理工程师,主要从事气象服务工作。Email:pengyanmei00@163.com

收稿日期: 2013-12-10

  修回日期: 2014-01-15

  网络出版日期: 2014-09-20

基金资助

国家自然科学基金项目(41375162,41175017,41375163);新疆气象局科学技术研究与应用技术开发项目(201408)资助

Comparison of Aerosol Scattering Coefficiens between Desert and City

  • Peng Yanmei ,
  • He Qing ,
  • Liu Xinchun ,
  • Wang Shu ,
  • Gao Lei
Expand
  • 1. Xinjiang Meteorological Service Center, Urumqi 830002, China;
    2. Xinjiang Laboratory of Tree Ring Ecology/Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration/Taklimakan Desert Atmosphere and Environment Observation and Experiment Station, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

Received date: 2013-12-10

  Revised date: 2014-01-15

  Online published: 2014-09-20

摘要

利用塔克拉玛干沙漠大气环境观测试验站和中国气象局乌鲁木齐沙漠气象研究所承担的乌鲁木齐大气成分观测站2010年1月1日至12月31日的单波段积分浊度计的观测资料,分析了沙漠(塔中)和城市(乌鲁木齐)两种不同下垫面地区的气溶胶散射系数的变化特征。(1)散射系数小时平均值:塔中地区变化范围在39.6~8 442.8 Mm-1,平均值318.4 Mm-1;乌鲁木齐变化范围在28.9~6 590.0 Mm-1,平均值451.5 Mm-1;乌鲁木齐小时平均值在1 000 Mm-1以上的高值区间大于塔中地区。(2)散射系数日变化:塔中呈现单峰变化,其中最大值387.0 Mm-1出现于凌晨02:00,最小值276.4 Mm-1出现于午后的17:00;乌鲁木齐呈现三锋变化,3个峰值分别出现于09:00、14:00、22:00,与塔中地区存在明显差异。(3)散射系数月均值变化:塔中的月平均值最大是4月,为500.2 Mm-1,最小是2月,为145.9 Mm-1;乌鲁木齐月均值最大在2月,为1 086.3 Mm-1,最小值在7月,为101.1 Mm-1,两地区月均值变化整体呈现相反的现象。(4)散射系数季节变化:塔中地区春季>夏季>秋季>冬季;乌鲁木齐冬季>秋季>春季>夏季。

本文引用格式

彭艳梅 , 何清 , 刘新春 , 王舒 , 高磊 . 沙漠与城市气溶胶散射系数变化比较[J]. 中国沙漠, 2014 , 34(5) : 1363 -1368 . DOI: 10.7522/j.issn.1000-694X.2013.00361

Abstract

The observation data of single-band integral nephelometer from January 1, 2010 to December 31, 2010 in Taklimakan Desert atmospheric observations and Experiment Station (Tazhong, referred to as desert) and atmospheric composition observatories station (Urumqi, referred to city) were used to analyze the change characteristics of aerosol scattering coefficients of these two different underlying surface areas. The results showed that: (1) The hourly average aerosol scattering coefficients range from 39.6 to 8 442.8 Mm-1 in Tazhong, and the average value is 318.4 Mm-1; the hourly average aerosol scattering coefficients range from 28.9 to 6 590.0 Mm-1 in Urumqi, and the average value is 451.5 Mm-1; the hours with the average value above 1000 Mm-1 in Urumqi was much more than that in Tazhong. (2) The diurnal variation of aerosol scattering coefficients shows a single peak in Tazhong, and the maximum value is 387.0 Mm-1 which appears at 02:00, the minimum value is 276.4 Mm-1 which appears at 17:00. The diurnal variation of aerosol scattering coefficients presents three peaks in Urumqi, and the three peaks appear at 09:00, 14:00, and 22:00, respectively. There were significant differences for diurnal variation between Tazhong and Urumqi. (3) In Tazhong, the maximum value of monthly average aerosol scattering coefficients is 500.2 Mm-1 which appears in April, the minimum value of 145.9 Mm-1 is in February. In Urumqi, the maximum value of monthly average aerosol scattering coefficients is 1 086.3 Mm-1 in February, the minimum value is 101.1 Mm-1 in July. The monthly change in the two regions as a whole shows an opposite trend. (4) The seasonal average values in Tazhong are ranked in the sequence of spring>summer>autumn>winter, and the seasonal average values in Urumqi are ranked in the sequence of winter>autumn>spring>summer.

参考文献

[1] 王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119-124.
[2] Charlson R J.Integrating nephelometer[J].Atmospheric Technology,1980,12:10-14.
[3] Bodhaine B A.Aerosol absorption measurements at Barrow,Mauna Loa and the south pole[J].Journal of Geophysical Research,1995,100(D5):8967-8975.
[4] Carrico C M,Rood M J,Ogren J A.Aerosol light scattering properties at Cape Grim,Ta smania,during the first aerosol characterization experiment(ACEI)[J].Journal of Geophysical Research,1998,103(D13):16565-16574.
[5] Anderson T L,Masonis S J,Covert D S,et al.Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia[J].Journal of Geophysical Research,2003,108(D23):8647.
[6] Xu J,Bergin M H,Yu X,et al.Measurement of aerosol chemical,physical and radiative properties in the Yangtze delta region of China[J].Atmospheric Environment,2002,36:161-173.
[7] White W H,Macias E S,Nininger R C,et al.Size-resolved measurements of light scattering by ambient particles in the Southwestern U.S.A[J].Atmospheric Environment,1994,28:909-922.
[8] Chow J C,Watson J G,Lowenthal D H,et al.Comparability between PM2.5 and particle light scattering measurements[J].Environmental Monitoring and Assessment,2002,79:29-45.
[9] Bergin M H,Cass G R,Xu J,et al.Aerosol radiative,physical,and chemical properties in Beijing during June 1999[J].Journal of Geophysical Research,2001,106(D16):17969-17980.
[10] 胡波,张武,张镭等.兰州市西固区冬季大气气溶胶粒子的散射特征[J].高原气象.2003,22(4):354-361.
[11] 柯建宗,汤洁,王炳忠,等.积分浊度计在沙尘暴监测网试验中应用分析[J].气象科技,2004,32(4):258-263.
[12] 杨莲梅,张广兴,魏文寿,等.粒子散射系数在沙尘天气观测分级中的初步分析[J].中国沙漠,2006,26(3):380-383.
[13] 章秋英,牛生杰,沈建国,等.半干旱区气溶胶散射特性研究[J].中国沙漠,2008,28(4):755-762.
[14] 孟昭阳,蒋晓明,颜鹏,等.太原冬季大气气溶胶的散射特征[J].气候变化研究进展,2007,3(5):255-260.
[15] 古金霞,白志鹏,解以扬,等.天津市冬季颗粒物散射消光特征[J].南开大学学报(自然科学版),2009,42(2):73-78.
[16] 王振海,张武,史晋森,等.半干旱地区气溶胶散射和吸收特性的观测研究[J].高原气象,2012,31(5):1424-1431.
[17] 陈霞,魏文寿,刘明哲,等.塔里术盆地沙尘气溶胶对短波辐射的影响——以塔中为例[J].中国沙漠,2008,28(5):920-926.
[18] 刘新春,钟玉婷,何清,等.塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征[J].中国沙漠,2012,32(4):1045-1052.
[19] 于兴娜,张慧娟,登增然登,等.沙尘源区与下游地区沙尘期间气溶胶光学特征分析[J].中国沙漠,2012,32(2):458-464.
[20] 李霞,任宜勇,吴彦,等.乌鲁木齐污染物浓度和大气气溶胶光学厚度的关系[J].高原气象,2007,26(3):534-541.
[21] 刘强,何清,艾力·买买提明,等.塔中秋冬季大气稳定度频率分布特征[J].沙漠与绿洲气象,2010,4(1):24-27.
文章导航

/