img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

克里雅河流域土壤盐分光谱定量分析

  • 陶兰花 ,
  • 塔西甫拉提· ,
  • 特依拜 ,
  • 姜红涛 ,
  • 买买提· ,
  • 沙吾提 ,
  • 吴雪梅
展开
  • 新疆大学 资源与环境科学学院/绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
陶兰花(1988- ),女(蒙古族),新疆博乐人,硕士研究生,主要从事干旱区资源遥感定量研究.Email:tlh1003@163.com

收稿日期: 2013-09-03

  修回日期: 2013-10-28

  网络出版日期: 2014-11-20

基金资助

国家自然科学基金重点基金联合项目(U1138303);教育部长江学者和创新团队(IRT1180)资助

Quantitative Retrieval of Soil Salt Content Using Hyperspectral Data in the Keriya River Basin

  • Tao Lanhua ,
  • Tashpolat· ,
  • Tiyip ,
  • Jiang Hongtao ,
  • Mamat· ,
  • Sawut ,
  • Wu Xuemei
Expand
  • College of Resources and Environment Sciences/Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, China

Received date: 2013-09-03

  Revised date: 2013-10-28

  Online published: 2014-11-20

摘要

本文对克里雅河流域进行野外调查、采集土壤样品及其光谱反射特性的测量,通过比较不同光谱预处理的方法建立偏最小二乘回归(PLSR)模型,并利用决定系数(R2)、均方根误差(RMSEP)、残留预测偏差(RPD)对模型的稳定性和预测能力进行检验.结果表明:反射率一阶微分是预测土壤样本盐分含量的最佳光谱指标.PLSR模型在建立土壤光谱与盐分含量关系时较为适用,R2RMSERPD分别为0.77、0.25和1.88.利用反射光谱估算土壤中盐分含量,通过各种光谱预处理方法可以提高估算精度,可以为该区土壤盐渍化评价和生态环境调查提供依据.

本文引用格式

陶兰花 , 塔西甫拉提· , 特依拜 , 姜红涛 , 买买提· , 沙吾提 , 吴雪梅 . 克里雅河流域土壤盐分光谱定量分析[J]. 中国沙漠, 2014 , 34(6) : 1562 -1567 . DOI: 10.7522/j.issn.1000-694X.2013.00427

Abstract

Spectral reflectance properties of soil samples, collected in the area along the Keriya River, were measured. A partial least squares regression (PLSR) model was establish by comparing different preprocessing methods spectral reflectance and a theoretical foundation for the quantitative inversion of soil salt content was provided, then the root mean squared error (RMSE) was introduced to test the predictability and precision of the model, coefficient of the determination (R2) was used to evaluate stability of the model. The results demonstrated that: the first derivate reflectance was optimal index for predicting salt content; the PLSR was the optimal model to establish the relationship between the soil spectrum and salt content, in which the R2, RMSE and rate of prediction to deviation was 0.77, 0.25 and 1.88, respectively.

参考文献

[1] 李宝富,熊黑钢,龙桃,等.新疆奇台绿洲农田灌溉前后土壤水盐时空变异性研究[J] .中国沙漠,2012,32(5):1369-1378.
[2] 周丽,王玉刚,李彦,等. 盐碱荒地开垦年限对表层土壤盐分的影响[J].干旱区地理,2013,36(2):285-291.
[3] 冉启洋,贡璐,韩丽,等.塔里木河上游绿洲土壤表层盐分特征[J].中国沙漠,2013,33(4):1098-1103.
[4] 张芳,熊黑钢,龙桃,等.实测反射率与影像反射率对土壤碱化预测的对比分析[J].光谱学与光谱分析,2011,31(1):227-232.
[5] 王飞,丁建丽,伍漫春,等.基于NDVI-SI特征空间的土壤盐渍化遥感模型[J].农业工程学报,2010,26(8):168-173.
[6] 翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(6):369-375.
[7] 谭军利,康跃虎,焦艳平,等.不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J].农业工程学报,2008,26(6):59-63.
[8] Goetz A F H,Vane G,Solomon J E,et al.Imaging spectroscopy for earth remote sensing[J].Science,1985,228:1147-1153.
[9] Liu H J,Zhang Y Z,Zhang B.Novel hyperspectral reflectance models for estimating black-soil organic matter in northeast China[J].Environ Monitor Assessment,2009,154:147-154.
[10] Li Y,Demetriades-Shash T H,Kanemasu E T,et al.Use of second derivation canopy reflectance for monitoring prairie vegetation over different soil backgrounds[J].Remote Sensing of Environment,1993,44:81-87.
[11] 黄启厅,周炼清,史舟,等.FPXRF—偏最小二乘法定量分析土壤中的铅含量[J].光谱学与光谱分析,2009,29(5):1434-1438.
[12] 赵振亮,塔西甫拉提·特依拜,丁建丽,等.新疆典型绿洲土壤电导率和pH值的光谱响应特征[J].中国沙漠,2013,33(5):1413-1419.
[13] 孙毅,林培.盐渍土土壤光谱反射率与表土含盐量关系[J].陕西农业科学,1991,(3):19-20.
[14] 唐彦.土壤含盐量反演的研究[J].测绘工程,2010,19(6):65-67,72.
[15] 夏军,塔西甫拉提·特依拜,买买提·沙吾提,等.热红外发射率光谱在盐渍化土壤含盐量估算中的应用研究[J].光谱学与光谱分析,2012,32(11):2956-2961.
[16] Lu N,Zhang Z,Gao Y.Recognition and mapping of soil salinization in arid environment with hyperspectral data[J].Geoscience and Remote Sensing Symposium,IEEE 2005,6:4520-4523.
[17] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
[18] 雷磊,塔西甫拉提·特依拜,丁建丽,等.基于HJ-1A高光谱影响盐渍化土壤信息提取——以渭干河-库车河绿洲为例[J].中国沙漠,2013,33(4):1104-1109.
[19] 沈掌泉,王珂, Huang X W.用近红外光谱预测土壤碳含量的研究[J].红外与毫米波学报,2010,29(1):32-37.
[20] Steve G.Vibration Spectrum Analysis:A Practical Approach[M].New York,USA:Industrial Press Inc,1999:12-19.
[21] 高荣强,范世福, 严衍禄,等.近红外光谱的数据预处理研究[J].光谱学与光谱分析,2004,24(12):1563-1565.
[22] Tsai F A,William P.A derivative-aided hyperspectral image analysis system for land-cover classification[J].IEEE Transaction on Geoscience and Remote Sensing,2002,10(2):416-425.
[23] Tsai F A,William P.Derivative analysis of hyperspectral data[J].Remote Sensing of Environment,1998,66:41-51.
[24] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2003.
[25] 苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].计算机应用研究,2008,25(2):390-394.
[26] 刘焕军,张柏,宋开山,等.黑土有机质含量高光谱模型研究[J].土壤学报,2007,44(1):27-32.
[27] Krishnan P,Alexander J D,Butler B J,et al.Reflectance technique for predicting soil organic matter[J].Soil Science,1980,44:1282-1285.
[28] Viscarra R V,McGlyn R N,McBratney A B.Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy[J].Geoderma,2006,137(1/2):70-82.
[29] 赵振亮,塔西甫拉提·特依拜,张飞,等.塔里木河中游典型绿洲土壤含盐量的光谱特征[J].自然灾害学报,2012,21(5):72-78.
文章导航

/