利用河西走廊伏旱和伏期降水资料序列,张掖观象台的地面气温、降水、探空等气象资料,以及国家气候中心提供的74个环流因子,借助BP神经网络可以逼近任意非线性函数的能力和特点,构建了一个用于预测伏旱和伏期降水的模型,并对模型的预报效果进行验证。结果表明:BP神经网络模型能够对伏期干旱进行有效地预测,该预测模型对伏旱和伏期降水有比较理想的预报效果,伏旱预报历史拟合率高达97.6%、模型试报准确率为84.6%,伏期降水预测历史拟合率高达97.6%、模型试报准确率为76.9%,其性能指标符合实际要求,具有很好的实际应用价值。
Using the summer drought and precipitation data collected in the Hexi Corridor, temperature, precipitation air sounding data from Zhangye Observatory, and circulation factors data from National Climate Center of China, a model to predict summer drought and summer precipitation was established based on BP Neural Network model. BP Neural Network model has comparatively ideal forecasting effect to summer drought and summer precipitation. The simulation results have a consistent rate of 97.6% and 84.6% with summer drought history and forecasting, respectively. The simulation results have a consistent rate of 97.6% and 76.9% with summer precipitation history and forecasting, respectively. So BP Neural Network model has very good actual application capability for summer drought forecasting.
[1] 刘洪兰,李栋梁,郭江勇.河西走廊春末夏初降水的空间异常分布及年代际变化[J].冰川冻土,2004,26(1):55-60.
[2] 刘洪兰,张强,胡文超,等.1961-2011年西北地区春季降水变化特征及其空间分异性[J].冰川冻土,2013,35(4):857-864.
[3] 魏娜,巩远发,孙娴,等.西北地区近50 a降水变化及水汽输送特征[J].中国沙漠,2010,30(6):1450-1457.
[4] 姜旭,赵光平.中国西北地区东部雨日的气候特征及其与低空风场的相关性研究[J].中国沙漠,2013,33(3):888-895.
[5] 刘洪兰,张强,张俊国,等.1960-2012年河西走廊中部沙尘暴空间分布特征和变化规律[J].中国沙漠,2014,34(4):1102-1108.
[6] 刘洪兰,张俊国,董安祥,等.张掖市水资源利用现状及未来趋势预测[J].干旱区研究,2008,25(1):35-40.
[7] 刘洪兰,白虎志,张俊国,等.1957-2006年河西走廊中部气候变化对水资源的影响[J].冰川冻土,2010,32(1):183-188.
[8] 张强,胡隐樵,曹晓彦,等.关于我国西北干旱气候的若干问题[J].中国沙漠,2000,20(4):357-362.
[9] 刘洪兰,白虎志,张俊国.河西走廊中部近53年降水变化及未来趋势预测[J].干旱区研究,2011,28(1):146-150.
[10] 徐渊,孙鹏,张倩,等.神经网络[EB/OL].2012-09-25.http://wenku.baidu.com/view/629d6f0df12d2af90242e662.html.
[11] Rober J K,Ans P B.Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks[J].Weather and Forecasting,1998,13(4):1194-1204.
[12] Marzban C,Wit T A.A Bayesian neural network for severehail size prediction[J].Weather and Forecasting,2001,16:600-610.
[13] Hall T,Brooks H E,Doswell C A.Precipitation forecasting using a neural network[J].Weather and Forecasting,1999,14:338-345.
[14] 王翔.基于BP神经网络的遥感影像模式识别方法研究[D].太原:太原科技大学,2009.
[15] 王永华.计算ADME研究[D].大连:中国科学院大连化学物理研究所,2006.
[16] 匡奕军.最优参数设计问题的软计算集成方法研究[J].科技导报,2006,219(9):77-80.
[17] 杨一鸣,童学锋.神经网络在导弹故障诊断专家系统中的应用[J].微计算机应用,2005,26(5):28-30.
[18] 左合君,勾芒芒,李钢铁,等.BP网络模型在沙尘暴预测中的应用研究[J].中国沙漠,2010,30(1):193-197.
[19] 刘洪兰,张强,赵小强,等.张掖湿地公园水域结冰厚度预报的BP神经网络与统计回归方法对比[J].干旱气象,2013,31(2):425-431.
[20] 李国勇.智能预测控制及其MATLAB实现[M].北京:电子工业出版社,2010:16-24.
[21] 李学桥,马莉.神经网络工程应用[M].重庆:重庆大学出版社,1996:37-44.