img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

固沙植被区两类结皮斑块土壤呼吸对降雨脉冲的响应

  • 赵蓉 ,
  • 李小军 ,
  • 赵洋 ,
  • 杨昊天 ,
  • 李刚
展开
  • 1. 中国科学院寒区旱区环境与工程研究所 沙坡头沙漠研究试验站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
赵蓉 (1988-), 女, 甘肃武威人, 硕士研究生, 主要从事干旱区土壤生态学研究。Email: zhaorong0814@126.com

收稿日期: 2013-12-20

  修回日期: 2014-02-16

  网络出版日期: 2015-03-20

基金资助

中国科学院知识创新工程重要方向项目(KZCX2-EW-301-2)

CO2 Efflux from Two Typies Biologically Crusted Soil in Response to Simulated Precipitation Pulses in the Tengger Desert

  • Zhao Rong ,
  • Li Xiaojun ,
  • Zhao Yang ,
  • Yang Haotian ,
  • Li Gang
Expand
  • 1. Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-12-20

  Revised date: 2014-02-16

  Online published: 2015-03-20

摘要

与降水事件密切相关的土壤水分有效性是荒漠生态系统土壤呼吸的重要驱动因子。研究了固沙植被区以藓类和藻类为主的生物土壤结皮斑块土壤呼吸对模拟降雨(5、10、20 mm)的响应。结果表明:3种降雨量对不同结皮斑块土壤呼吸均有显著的激发作用, 但2种土壤的响应特征不同。藓类结皮斑块土壤呼吸速率在降雨后0.5 h达到最大值, 而藻类结皮斑块土壤在降雨后2 h达到最大值, 其呼吸速率分别是降雨前土壤呼吸速率的43~58、21~25倍,随后, 两类结皮斑块土壤呼吸速率逐渐下降并恢复到降雨前水平。随着降雨量的增加, 藓类结皮斑块土壤最大呼吸速率和平均呼吸速率显著增大, 而藻类结皮斑块土壤则无明显变化; 2种土壤碳释放量均随着降雨量的增大而增加。在相同降雨条件下, 藓类结皮斑块土壤呼吸速率峰值和平均值及碳释放量均显著大于藻类结皮斑块土壤。表明生物土壤结皮和降雨量均对荒漠生态系统土壤呼吸起着重要的调控作用。

本文引用格式

赵蓉 , 李小军 , 赵洋 , 杨昊天 , 李刚 . 固沙植被区两类结皮斑块土壤呼吸对降雨脉冲的响应[J]. 中国沙漠, 2015 , 35(2) : 393 -399 . DOI: 10.7522/j.issn.1000-694X.2014.00009

Abstract

In arid and semiarid region, soil water availability, which is closely related to precipitation, is the major driver of soil respiration. In this study, different simulated precipitations (5, 10, 20 mm) were applied to two biologically crusted soils to investigate soil CO2 efflux in response to precipitation pulse in these regions. The results showed that three levels of rainfall significantly stimulated CO2 efflux from both biologically crusted soils. However, the response patterns varied between crust types. After rainfall, the respiration rates of moss and algal overlying soils reached their maximum within 0.5 h and 2 h, respectively. The peak values were 43-58 and 21-25 times greater than the background levels. After it reached the peak, soil CO2 efflux gradually decreased and returned to background level. The peak and average respiration rates of moss crusted soils significantly increased with the amount of water added, while these parameters did not vary with experimental pulse in algae crusted soil. Total carbon release of both biologically crusted soils increased with precipitation size. Following the same amount of water addition, peak and average respiration rates as well as total carbon emissions of moss overlying soils were significantly greater than the algae ones. Our results suggest that biological soil crusts and precipitation can co-regulate soil CO2 efflux.

参考文献

[1] Schlesinger W H.Evidence from chronosequence studies for low carbon-storage potential of soils[J].Nature,1990,348:232-234.
[2] Wang Y,Amundson R,Trumbore S.The impact of land use change on C turnover in soils[J].Global Biogeochemical Cycles,1999,13:45-57.
[3] Conant R T,Klopatek J M,Klopatek C C.Environmental factors controlling soil respiration in three semiarid ecosystems[J].Soil Science Society of America Journal,2000,64:383-390.
[4] Liu X,Wan S,Su B,et al.Response of soil CO2 efflux to water manipulation in a tall grass prairie ecosystem[J].Plant and Soil,2002,240:213-223.
[5] Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992,44:81-99.
[6] Trumbore S E,Chadwick O A,Amundson R.Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J].Science,1996,272(5260):393-395.
[7] Cox P M,Betts R A,Jones C D,et al.Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J].Nature,2000,408(6809):184-187.
[8] Raich J W,Potter C S,Bhawagati D.Interannual variability in global soil respiration,1980-1994[J].Global Change Biology,2002,8:800-812.
[9] Noy-Meir I.Desert ecosystems:environment and producers[J].Annual Review of Ecology and Systematics,1973,4:25-51.
[10] Birch H F.The effect of soil drying on humus decomposition and nitrogen availability[J].Plant and Soil,1958,10:9-32.
[11] Sala O E,Lauenroth W K.Small rainfall events:an ecological role in semiarid regions[J].Oecologia,1982,53(3):301-304.
[12] Sala O E,Lauenroth W K,Parton W J,et al.Water status of soil and vegetation in a shortgrass steppe[J].Oecologia,1981,48(3):327-331.
[13] Lee X,Wu H J,Sigler J,et al.Rapid and transient response of soil respiration to rain[J].Global Change Biology,2004,10(6):1017-1026.
[14] Schwinning S,Sala O E,Loik M E,et al.Thresholds,memory,and seasonality:understanding pulse dynamics in arid/semi-arid ecosystems[J].Oecologia,2004,141(2):191-193.
[15] Intergovernment Panel on Climate Change (IPCC).IPCC Fourth Assessment Report-Climate change 2007:the Physical Science Basis[R].Cambridge,UK:Cambridge University Press,2007.
[16] Shen W,Jenerette G D,Hui D,et al.Effects of changing precipitation regimes on dryland soil respiration and C pool dynamics at rainfall event,seasonal and interannual scales[J].Journal of Geophysical Research,2008,113(G3):G03024.
[17] Sponseller R A.Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem[J].Global Change Biology,2007,13(2):426-436.
[18] Anderson J M.Carbon dioxide evolution from two temperate,deciduous woodland soils[J].Journal of Applied Ecology,1973:361-378.
[19] Adu J K,Oades J M.Physical factors influencing decomposition of organic materials in soil aggregates[J].Soil Biology and Biochemistry,1978,10(2):109-115.4
[20] Harris R F.Effect of water potential on microbial growth and activity[M]//Parr J F,Gardner W R,Elliott L F.Water Potential Relations in Soil Microbiology.Madison,USA:Soil Sciety of America,1981:23-95.
[21] Orchard V A,Cook F J.Relationship between soil respiration and soil moisture[J].Soil Biology and Biochemistry,1983,15(4):447-453.
[22] Saetre P,Stark J M.Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species[J].Oecologia,2005,142(2):247-260.
[23] Chen S,Lin G,Huang J,et al.Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes[J].Journal of Plant Ecology,2008,1(4):237-246.
[24] Cable J M,Huxman T E.Precipitation pulse size effects on Sonoran Desert soil microbial crusts[J].Oecologia,2004,141(2):317-324.
[25] Zhang Z S,Li X R,Nowak R S,et al.Effect of sand-stabilizing shrubs on soil respiration in a temperate desert[J].Plant and Soil,2013,367(1-2):449-463.
[26] Zhao Y,Li X R,Zhang Z S,et al.The effects of extreme rainfall events on carbon release from biological soil crusts covered soil in fixed sand dunes in the Tengger Desert,northern China[J].Sciences in Cold and Arid Regions,2013,5(2):191 196.
[27] 赵洋,齐欣林,陈永乐,等.极端降雨事件对不同类型生物土壤结皮覆盖土壤碳释放的影响[J].中国沙漠,2013,33(2):543-548.
[28] 王新平,李新荣,潘颜霞,等.我国温带荒漠生物土壤结皮孔隙结构分布特征[J].中国沙漠,2011,31(1):58-62.
[29] Chamizo S,Cantón Y,Lázaro R,et al.Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems[J].Ecosystems,2012,15(1):148-161.
[30] Li X R,Zhou H Y,Wang X P,et al.The effects of sand stabilization and re-vegetation on cryptogam species diversity and soil fertility in Tengger desert,northern China [J].Plant and Soil,2003,251:237-245.
[31] 刘艳梅,李新荣,何明珠,等.生物土壤结皮对土壤微生物量碳的影响[J].中国沙漠,2012,32(3):669-673.
文章导航

/