img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

基于起跳初速度分布的沙颗粒浓度廓线的数值模拟

  • 黄新成 ,
  • 刘博 ,
  • 王旭峰 ,
  • 熊英
展开
  • 1. 塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300;
    2. 塔里木大学 现代农业工程重点实验室, 新疆 阿拉尔 843300
黄新成(1983-), 男, 安徽霍邱人, 硕士, 讲师, 从事风沙两相流运动的研究。Email:wildlilus@163.com

收稿日期: 2014-05-28

  修回日期: 2014-07-15

  网络出版日期: 2015-05-20

基金资助

国家自然科学基金主任基金项目(11242013);国家自然科学基金地区基金项目 (11162017)

A Numerical Simulation of Sand Particle Concentration Profiles Based on the Distribution of the Initial Lift-off Velocity

  • Huang Xincheng ,
  • Liu Bo ,
  • Wang Xufeng ,
  • Xiong Ying
Expand
  • 1. College of Mechanic and Electronic Engineering, Tarim University, Alar 843300, XinJiang, China;
    2. Key Laboratory of Modern Agriculture Engineering, Tarim University, Alar 843300, XinJiang, China

Received date: 2014-05-28

  Revised date: 2014-07-15

  Online published: 2015-05-20

摘要

跃移层内沙颗粒浓度分布是风沙两相流相互作用的结果,准确的沙颗粒浓度分布有助于弄清风沙互馈机制及沙颗粒间相互作用机制。由于沙颗粒浓度分布与沙颗粒起跳初速度分布以及气流运动密切相关,本文基于特定的沙颗粒起跳初速度分布函数,通过构建的沙颗粒在气流中运动的物理模型,并利用四阶精度的Adams-Bashforth-Moulton方法对所构建运动模型进行求解,统计分析稳定状态下两相流中沙颗粒运动轨迹的分布,分析其浓度廓线的垂向分布规律。计算结果表明跃移层内沙颗粒浓度分布廓线与高程呈负指数或伽马分布关系;高度一定时沙颗粒浓度廓线随摩阻风速的增大而减小,随颗粒直径的增大而增大。

本文引用格式

黄新成 , 刘博 , 王旭峰 , 熊英 . 基于起跳初速度分布的沙颗粒浓度廓线的数值模拟[J]. 中国沙漠, 2015 , 35(3) : 534 -541 . DOI: 10.7522/j.issn.1000-694X.2014.00088

Abstract

The sand particle concentration profile of wind blown sand in the saltation layer results from the interaction between wind and sand particles, and precise sand particle concentration profile can help to clarify the feed-back mechanism of wind-sand interactions and interactions between sand particles. Based on a special distribution function of sand particles' initial lift-off velocity and a physical model for the sand particles that moving in the wind flow, the trajectories of sand particles that in the steady state wind-sand flow are numerically calculated by fourth order Adams-Bashforth-Moulton method, and the sand particle concentration profiles are analyzed. The results indicate that the sand particle concentration profiles are directly and closely relevant with wind velocity and sand particle diameters and are exponentially or Gamma distributed with height. Interestingly, it will increase with the increase of the sand particle diameter and decrease with the increase of the shear velocity at any particular height.

参考文献

[1] Anderson R S, Haff P K.Wind modification and bed response during saltation of sand in air[M]//Aeolian Grain Transport 1:Mechonics.Berlin, Germany:Springer, 1991:21-51.
[2] Sørensen M, McEwan I.On the effect of mid-air collisions on aeolian saltation[J].Sedimentology, 1996, 43(1):65-76.
[3] 郑晓静, 李兴财, 谢莉.沙尘暴中球形沙粒局部带电对电磁波的交叉去极化效应[J].中国沙漠, 2011, 31(3):567-570.
[4] 王萍, 郑晓静.野外近地表风沙流脉动特征分析[J].中国沙漠, 2013, 33(6):1622-1628.
[5] 武生智, 郭为进.二维沙丘迎风坡沙粒跃移运动的数值模拟[J].中国沙漠, 2014, 34(2):307-311.
[6] 杨兴华, 何清, 艾力·买买提依明, 等.塔克拉玛干沙漠东南缘沙尘暴过程中近地表沙尘水平通量观测研究[J].中国沙漠, 2013, 33(5):1299-1304.
[7] 张正偲, 董治宝.腾格里沙漠东南部野外风沙流观测[J].中国沙漠, 2013, 33(4):973-980.
[8] Dong Z B, Wang H T, Zhang X H, et al.Height profile of particle concentration in an aeolian saltating cloud:a wind tunnel investigation by PIV MSD[J].Geophysical Research Letters, 2003, 30(19):GL017915.
[9] Dong Z B, Huang N, Liu X P.Simulation of the probability of midair interparticle collisions in an aeolian saltating cloud[J].Journal of Geophysical Research:Atmospheres, 2005, 110(D24):D006070.
[10] Dong Z B, Qian G Q, Luo W Y, et al.Analysis of the mass flux profiles of an aeolian saltating cloud[J].Journal of Geophysical Research:Atmospheres, 2006, 111(D16):JD006630.
[11] Kok J F, Renno N O.A comprehensive numerical model of steady state saltation (COMSALT)[J].Journal of Geophysical Research:Atmospheres, 2009, 114(D17):JD011702.
[12] Carneiro M V, Ara jo N A M, P htz T, et al.Midair collisions enhance saltation[J].Physical Review Letters, 2013, 111(5):058001.
[13] Berger K J, Anand A, Metzger P T, et al.Role of collisions in erosion of regolith during a lunar landing[J].Physical Review E, 2013, 87(2):022205.
[14] Kok J F.An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis[J].Geophysical Research Letters, 2010, 37(12):GL043646.
[15] Liu X P, Dong Z B.Experimental investigation of the concentration profile of a blowing sand cloud[J].Geomorphology, 2004, 60(3):371-381.
[16] 武建军, 何丽红, 郑晓静.跃移层中沙粒浓度分布特征的研究[J].兰州大学学报 (自然科学版), 2002, 38(3):15-21.
[17] 邹学勇, 朱久江, 董光荣, 等.风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报, 1992, 23:2175-2177.
[18] Anderson R S, Hallet B.Sediment transport by wind:toward a general model[J].Geological Society of America Bulletin, 1986, 97(5):523-535.
[19] Kang L, Guo L, Liu D.Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity[J].Geomorphology, 2008, 96(1):1-15.
[20] Chepil W S, Woodruff N P, Siddoway F H, et al.Vegetative and nonvegetative materials to control wind and water erosion[J].Soil Science Society of America Journal, 1963, 27(1):86-89.
[21] White B R, Schulz J C.Magnus effect in saltation[J].Journal of Fluid Mechanics, 1977, 81(3):497-512.
[22] White B R.Two-phase measurements of saltating turbulent boundary layer flow[J].International Journal of Multiphase Flow, 1982, 8(5):459-472.
[23] Xie L, Ling Y, Zheng X.Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory[J].Journal of Geophysical Research:Atmospheres, 2007, 112(D12):JD008254.
[24] Zou X Y, Cheng H, Zhang C L, et al.Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain[J].Geomorphology, 2007, 90(1):11-22.
[25] McLaughlin J B.Inertial migration of a small sphere in linear shear flows[J].Journal of Fluid Mechanics, 1991, 224:261-274.
[26] Loth E.Lift of a spherical particle subject to vorticity and/or spin[J].AIAA Journal, 2008, 46(4):801-809.
[27] Cheng N S.Simplified settling velocity formula for sediment particle[J].Journal of Hydraulic Engineering, 1997, 123(2):149-152.
[28] Prandtl L.The mechanics of viscous flows[M]//Aerodynamic Theory, vol.III.Berlin, Germany:Springer, 1935:34-208.
[29] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].New York, USA:Methuen, 1941.
[30] Zhou Y H, Guo X, Zheng X J.Experimental measurement of wind-sand flux and sand transport for naturally mixed sands[J].Physical Review E, 2002, 66(2):021305.
[31] Namikas S L.Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach[J].Sedimentology, 2003, 50(2):303-326.
[32] Liu X, Dong Z, Wang X.Wind tunnel modeling and measurements of the flux of wind-blown sand[J].Journal of Arid Environments, 2006, 66(4):657-672.
[33] Ho T D, Dupont P, El Moctar A O, et al.Particle velocity distribution in saltation transport[J].Physical Review E, 2012, 85(5):052301.
[34] Lü P, Dong Z B.The dependency of sand transport rate by wind on the atmospheric stability:a numerical simulation[J].Geomorphology, 2008, 99(1):296-301.
[35] Dong Z B, Lv P, Zhang Z C, et al.Aeolian transport over a developing transverse dune[J].Journal of Arid Land, 2014, 6(3):243-254.
文章导航

/