img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

毛乌素沙地植被物候时空变化特征及其影响因素

  • 王静璞 ,
  • 刘连友 ,
  • 贾凯 ,
  • 田丽慧
展开
  • 1. 北京师范大学 减灾与应急管理研究院 北京师范大学 减灾与应急管理研究院 环境演变与自然灾害教育部重点实验室, 北京 100875;
    2. 北京师范大学 减灾与应急管理研究院 地表过程与资源生态国家重点实验室, 北京 100875
王静璞(1987-), 女, 陕西杨凌人, 博士研究生, 主要从事沙漠化过程研究。Email:wjpu@mail.bnu.edu.cn

收稿日期: 2014-11-20

  修回日期: 2015-01-06

  网络出版日期: 2015-05-20

基金资助

高等学校科技创新新工程重大项目培育资金项目(沙尘暴动力过程的仿真模拟研究);国家自然科学基金项目(41321001, 41071331)

Spatiotemporal Variation of Vegetation Phenology and Its Affecting Factors in the Mu Us Sandy Land

  • Wang Jingpu ,
  • Liu Lianyou ,
  • Jia Kai ,
  • Tian Lihui
Expand
  • 1. Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, Beijing 100875, China;
    2. Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

Received date: 2014-11-20

  Revised date: 2015-01-06

  Online published: 2015-05-20

摘要

利用MODIS归一化植被指数(NDVI)对2001-2013年毛乌素沙地植被物候的时空变化进行了研究,并分析了物候与海拔、气候的关系。结果显示:(1)毛乌素沙地植被生长开始期(SOG)集中在第90~156天,生长结束期(EOG)在第245~323天,生长季长度(LOG)118~200 d;从东到西,SOG逐渐推迟,LOG逐渐缩短;随着海拔的升高,SOG显著推迟,EOG提前,LOG显著缩短。(2)2001-2013年,毛乌素沙地植被SOG明显提前,变化幅度为9 d/10a(R=-0.46,p=0.06),EOG和LOG分别呈提前和延长趋势,但变化都不显著。(3)研究区植被物候与温度的相关性不明显,但较多受降水量的影响,SOG与春季降水量的相关系数为-0.58(p=0.02);EOG与秋季降水量的相关系数为0.42(p=0.07);LOG与秋季降水量的相关系数为0.48(p=0.05)。

本文引用格式

王静璞 , 刘连友 , 贾凯 , 田丽慧 . 毛乌素沙地植被物候时空变化特征及其影响因素[J]. 中国沙漠, 2015 , 35(3) : 624 -631 . DOI: 10.7522/j.issn.1000-694X.2015.00021

Abstract

Based on NDVI from MODIS, this paper analyzed the spatiotemporal changes in vegetation phenology in the Mu Su Sandy Land from 2001 to 2013, and the response of the phenology and elevation, climatic factors. The results are enumerated as follows: (1) From 2001 to 2013, the start of growth season (SOG) was concentrated in 90-156 Julian day, the end of growth season (EOG) was in 245-323 Julian day, and the length of growth season (LOG) was in 118-200 Julian day. Elevation played an important role in the regional differentiation of phenology, with the increase of altitude, SOG significantly delayed, EOG advanced, and LOG significantly shortened. (2) From 2001 to 2013, SOG of vegetation came obviously earlier by nine days per decade (R=-0.46, p=0.06), EOG was early and LOG lengthened, but with no significance. (3) Vegetation phenology in the study area was mainly affected by precipitation, but with no apparent correlation with temperature. The correlation coefficient of SOG and spring precipitation was -0.58 (p=0.02), the correlation coefficient of EOG and autumn precipitation was 0.42 (p=0.07), and the correlation coefficient of LOG and autumn precipitation was 0.48 (p=0.05).

参考文献

[1] 竺可桢, 宛敏渭.物候学[M].长沙:湖南教育出版社, 1999:1-4.
[2] Seneviratne S I, Corti T, Davin E L, et al.Investigating soil moisture-climate interactions in a changing climate:a review[J].Earth-Science Reviews, 2010, 99(3/4):125-161.
[3] 赵艳芬, 师玮, 潘伯荣, 等.沙拐枣属(Calligonum L.)植物物候对长期气温变化的影响[J]. 中国沙漠, 2014, 34(3):732-739.
[4] 韩福贵, 徐先英, 尉秋实, 等.民勤绿洲-荒漠过渡带典型固沙植物生殖物候对气候变化的响应[J].中国沙漠, 2015, 35(2):330-337.
[5] 宛敏渭, 刘秀珍.中国物候观测方法[M].北京:科学出版社, 1987:16-20.
[6] Beck P S A, Atzberger C, Høgda K A, et al.Improved monitoring of vegetation dynamics at very high latitudes:a new method using MODIS NDVI[J].Remote Sensing of Environment, 2006, 100(3):321-334.
[7] Chen X Q, Hu B, Yu R.Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China[J].Global Change Biology, 2005, 11(7):1118-1130.
[8] Chen X Q, Xu C X, Tan Z J.An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China[J].International Journal of Biometeorology, 2001, 45(4):170-177.
[9] Soudani K, Maire G l, Dufrêne E, et al.Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Data.Remote Sensing of Environment, 2008, 112(5):2643-2655.
[10] 侯学会, 牛铮, 高帅.近十年中国东北森林植被物候遥感监测[J].光谱学与光谱分析, 2014, 34(2):515-519.
[11] Zhou L M, Tucker C J, Kaufmann R K, et al.Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J].Journal of Geophysical Research, 2001, 106(D17):20069-20083.
[12] Jeong S J, Ho C H, Gim H J, et al.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J].Global Change Biology, 2001, 17(7):2385-2399.
[13] Julien Y, Sobrino J A.Global land surface phenology trends from GIMMS database[J].International Journal of Remote Sensing, 2009, 30(13):3495-3513.
[14] 宋春桥, 游松财, 柯灵红, 等.藏北高原植被物候时空动态变化的遥感监测研究[J].植物生态学报, 2011, 35(8):853-863.
[15] 丁明军, 张镱锂, 孙晓敏, 等.近10年青藏高原高寒草地物候时空变化特征分析[J].科学通报, 2012, 57(33):3185-3194.
[16] 徐浩杰, 杨太保.近13 a来黄河源区高寒草地物候的时空变异性[J].干旱区地理, 2013, 36(3):468-474.
[17] 常守志, 王宗明, 宋幵山, 等.基于NDVI数据的三江平原农田物候监测[J].遥感技术与应用, 2011, 26(1):82-88.
[18] 国志兴, 张晓宁, 王宗明, 等.东北地区植被物候期遥感模拟与变化规律[J].生态学杂志, 2010, 29(1):165-172.
[19] 刘广峰, 吴波, 范文义, 等.基于像元二分模型的沙漠化地区植被覆盖度提取--以毛乌素沙地为例[J].水土保持研究, 2007, 14(2):268-271.
[20] 北京大学地理系.毛乌素沙地自然条件及其改良利用[M].北京:科学出版社, 1983:4-6.
[21] Jönsson P, Eklundh L.TIMESAT-a program for analyzing time-series of satellite sensor data[J].Computers and Geosciences, 2004, 30(8):833-845.
[22] 曾彪.青藏高原植被对气候变化的响应研究(1982-2003)[D].兰州:兰州大学, 2008.
[23] White M A, Thomton P E, Running S W.A continental phenology model for monitoring vegetation responses to inter annual climatic variability[J].Global Biogeochemical Cycles, 1997, 11(2):217-234.
[24] Yu H Y, Luedeling E, Xu J C, et al.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51):22151-22156.
[25] Reed B C, Brown J F, Zee D V, et al.Measuring phenological variability from satellite imagery[J].Journal of Vegetation Science, 1994, 5(5):703-714.
[26] Schwartz M D, Reed B C, White M A.Assessing satellite-derived start-of-season measures in the conterminous USA[J].International Journal of Climatology, 2002, 22(14):1793-1805.
[27] Moulin S, Kergoat L, Viovy N, et al.Global scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements[J].Journal of Climate, 1997, 10:1154-1170.
[28] Tateishi R, Ebata M.Analysis of phenological change patterns using 1982-2000 Advanced Very High Resolution Radiometer (AVHRR) data[J].International Journal of Remote Sensing, 2004, 25(12):2287-2300.
[29] Zhang X Y, Tarpley D, Sullivan J T.Diverse responses of vegetation phenology to a warming climate[J].Geophysical Research Letters, 2007, 34(19):19405-19410.
[30] Zhang X Y, Friedl M A, Schaaf C B, et al.Monitoring vegetation phenology using MODIS[J].Remote Sensing of Environment, 2003, 84(3):471-475.
[31] 刘慧.基于土壤水分和气温的草地返青模型及制备干旱研究[D].北京:清华大学, 2012.
[32] 侯学会, 牛铮, 高帅, 等.基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J].农业工程学报, 2013, 29(1):142-150.
[33] 王宏, 李晓兵, 余弘婧.基于NOAA/AVHRR NDVI监测中国北方典型草原的生长季及变化[J].植物生态学报, 2006, 30(3):365-374.
[34] 马世瑞.浅谈乌审旗的深沙治理[J].内蒙古林业, 1996, 7:12-13.
文章导航

/