img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

博斯腾湖滨柽柳(Tamarix ramosissina)生长对湖水位的敏感性

  • 侯佳文 ,
  • 海米提· ,
  • 依米提 ,
  • 叶茂
展开
  • 1. 新疆大学 资源与环境学院, 新疆 乌鲁木齐 830046;
    2. 新疆师范大学 地理科学与旅游学院, 新疆 乌鲁木齐 830054
侯佳文(1975-), 女, 新疆石河子人, 硕士研究生, 主要研究土地规划与干旱区水资源。Email:490005603@qq.com

收稿日期: 2014-12-20

  修回日期: 2015-03-03

  网络出版日期: 2015-05-20

基金资助

国家自然科学基金委员会-新疆维吾尔自治区人民政府联合基金重点项目(U1138302)

The Sensitivity of Ring Width of Tamarix ramosissina to Lake Level of the Bosten Lake

  • Hou Jiawen ,
  • Haimit· ,
  • Yimiti ,
  • Ye Mao
Expand
  • 1. School of Resources & Environmental Science, Urumqi University, Urumqi 830046, China;
    2. School of Geography Science and Tourism, Xinjiang Normal unveristy, Urumqi 830054, China

Received date: 2014-12-20

  Revised date: 2015-03-03

  Online published: 2015-05-20

摘要

基于博斯腾湖1955-2012年湖水位变化资料,利用树木年轮法分析了博斯腾湖年和月水位变化与湖滨柽柳(Tamarix ramosissina)年轮生长关系,利用敏感度指数得出博斯腾湖滨柽柳年轮生长的敏感水位范围。结果表明:(1)1955-2012年博斯腾湖年平均水位经历了3个明显变化阶段,即1955-1987年下降至最低,1987-2002年上升至最高。受向下游生态输水影响,2002-2012年博斯腾湖水位快速下降。输水对博斯腾湖月平均水位和季节性水位变化有影响。(2)博斯腾湖滨柽柳年轮指数与当年的湖水位变化和前1年的湖水位变化均显著相关(p<0.05)。柽柳年轮指数与前1年10月至当年4月各个月份的湖水位表现出显著相关(p<0.05)。柽柳年轮指数与前1年冬季湖水位相关显著(p<0.05),与当年春季3-4月月平均湖水位相关性显著,与当年夏季和秋季湖水位的相关性不显著。(3)博斯腾湖滨柽柳年轮生长对月湖水位变化响应比较敏感。当湖水位在1045.3 m时,柽柳年轮指数灵敏度指数(Sk)存在最低值;当湖水位在1 046.3 m时,Sk出现最高值。

本文引用格式

侯佳文 , 海米提· , 依米提 , 叶茂 . 博斯腾湖滨柽柳(Tamarix ramosissina)生长对湖水位的敏感性[J]. 中国沙漠, 2015 , 35(3) : 667 -673 . DOI: 10.7522/j.issn.1000-694X.2015.00071

Abstract

Annual and monthly level data of the Bosten Lake and the dendrochronology methods are used to analyze the relationship of lake level and ring growth of Tamarix ramosissina. A relationship formula between the ring index and the lake level is established. The sensitivity method is applied to analyze the sensitivity of the ring growth to the lake level. The results show that: (1) Bosten Lake level has three obviously change stages from 1955 to 2012. The level decreased from 1955 to 1987, and increased significantly from 1987 to 2002. However, the lake level began to decline from 2002 to 2012 due to water transferring from the Boaten Lake to the lower reaches of the Tarim River. Water transfer also influences the monthly and seasonal lake level change of the Bosten Lake. (2) The ring index is correlated significantly with lake level in current and previous year (p<0.05). Furthermore, the correlation is significant between ring index and lake level from pervious October to current April (p<0.05). And the correlation is also significant between ring index and lake level from March to April in current year while the correlation is not significant from summer to autumn in current year. (3) The sensitivity of the ring index to the lake level change is significantly. The Sk value of ring width appears minimum when lake level is 1 045.3 m. The Sk value is maximum when the lake level is up to 1 046.3 m. Thus, based on ring index sensitivity analysis, suitable sensitive lake level for protecting Tamarix community is determined to be between 1 045.3 and 1 046.3 m.

参考文献

[1] Oberhuber W.Influence of climate on radial growth of Pinuscembra within the alpine timberline ecotone[J].Tree Physiology, 2004, 24:291-301.
[2] 刘普幸, 陈发虎, 勾晓华, 等.额济纳旗近100 a来胡杨年表的建立与响应分析[J].中国沙漠, 2005, 25(5):764-768.
[3] 芦晓明, 梁尔源.灌木年轮学研究进展[J].生态学报, 2013, 33(5):1367-1374.
[4] Milton S J, Gourlay I D, Dean W R.Shrub growth and demography in arid Karoo, South Africa:inference from wood rings[J].Journal of Arid Environments, 1997, 37(3):487-496.
[5] Copenheaver C A, Grtner H, Schfer I, et al, Cherubini P.Drought-triggered false ring formation in a medeterranean shrub[J].Botany, 2010, 88(6):545-555.
[6] Rayback S A, Lini A, Berg D L.The dendroclimatological potential of an alpine shrub Cassiope Mertensiana, from Mount Rainier, WA, USA.Geografiska Annaler:Serises A[J].Physical Geography, 2012, 94(3):413-427.
[7] 肖生春, 肖洪浪.荒漠植被红砂(Reaumurta soongorica)水热响应的年轮学研究[J].中国沙漠, 2006, 26(4):547-552.
[8] 肖生春, 肖洪浪, 司建华, 等.干旱区多枝柽柳的生长特性[J].西北植物学报, 2005, 25(5):1012-1016.
[9] 万洪秀, 孙占东, 王润.博斯腾湖水位变动对湿地生态环境的影响[J].自然资源学报, 2006, 21(2):260-266.
[10] 吴敬禄, 马龙, 曾海鳌.新疆博斯腾湖水质水量及其演化特征分析[J].地理科学2013, 33(2):231-237.
[11] 肖生春, 肖洪浪, 周茂先, 等.近百年来西居延海湖泊水位变化的湖岸林树轮记录[J].冰川冻土, 2004, 26(5):557-562.
[12] 邱冰, 姜加虎, 孙占东, 等.基于统计降尺度模型的博斯腾湖流域未来气温和降水变化趋势分析[J].资源科学, 2010, 32(6):1133-1140.
[13] 施雅风, 张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学(B辑), 1995, 25(9):968-977.
[14] 王亚俊, 李宇安, 王彦国, 等.20世纪50年代以来博斯腾湖水盐变化及趋势[J].干旱区研究, 2005, 22(3):355-359.
[15] 李江风, 袁玉江, 由希尧.树木年轮水文学研究与应用[M].北京:科学出版社, 2000:146-252.
[16] 夏军, 左其亭, 邵民诚.博斯腾湖水资源可持续利用--理论·方法·实践[M].北京:科学出版社, 2003:40-41.
[17] 彭小梅, 肖生春, 肖洪浪.树木年轮宽年表建立方法研究进展[J].中国沙漠, 2013, 33(3):857-863.
[18] 张宏.极端干旱气候下盐化草甸植被净初级生产力对全球变化的响应[J].自然资源学报, 2001, 16(3):216-220.
[19] Hill N M, Keddy P A, Wisheu I C.A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs[J].Environmental Management, 1998, 22(5):723-736.
[20] Toner M, Keddy P.River hydrology and riparian wetlands:a predictive model for ecological assembly[J].Ecological Applications, 1997, 7:236-246.
文章导航

/