img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

乌鲁木齐冬季大气细颗粒物水溶性离子特征及来源

  • 赵克蕾 ,
  • 刘新春 ,
  • 陆辉 ,
  • 何清 ,
  • 钟玉婷 ,
  • 闫景武
展开
  • 1. 新疆大学 资源与环境科学学院, 新疆 乌鲁木齐 830046;
    2. 中国气象局乌鲁木齐沙漠气象研究所 中国气象局树木年轮理化研究重点开放实验室/新疆树木年轮生态重点实验室, 新疆 乌鲁木齐 830002;
    3. 湖南大学 环境科学与工程学院, 湖南 长沙 410082
赵克蕾(1989-), 女, 甘肃武威人, 硕士研究生, 主要从事大气环境与城市气溶胶的研究。Email:zhaokelei@126.com

收稿日期: 2014-05-21

  修回日期: 2014-06-09

  网络出版日期: 2015-05-20

基金资助

中国沙漠气象科学研究基金项目(Sqj2012011);国家自然科学基金项目(41375162);新疆气象局科学技术研究与应用技术开发项目(MS201408)

Characteristics and Sources of Water-Soluble Ions of PM2.5 in Winter in Urumqi

  • Zhao Kelei ,
  • Liu Xinchun ,
  • Lu Hui ,
  • He Qing ,
  • Zhong Yuting ,
  • Yan Jingwu
Expand
  • 1. College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, China;
    2. Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration/Xinjiang Key Laboratory of Tree Ring Ecology, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
    3. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China

Received date: 2014-05-21

  Revised date: 2014-06-09

  Online published: 2015-05-20

摘要

为了探讨乌鲁木齐冬季大气细颗粒物的污染水平及其水溶性离子的特征,于2013年1-3月采集大气PM2.5样品,并利用离子色谱仪分析其中的水溶性离子,采用硫转化率、离子相关性分析及后向轨迹模型对其可能来源进行了讨论。结果表明:观测期间采样点PM2.5平均质量浓度为170.13±51.39 μg·m-3,水溶性离子总浓度平均值为53.47±23.76 μg·m-3,其中3种二次离子(SO42-、NO3-和NH4+)是水溶性离子的主要组分;不同天气类型下PM2.5和离子浓度差异较大,雾、霾天气二次离子浓度占总浓度的81.99%和86.24%,硫转化率均大于0.1;春节期间由于燃放大量的烟花爆竹,使得PM2.5可溶性离子K+和Cl-浓度急剧上升;NH4+与SO42-、NO3-相关系数分别为0.975和0.748,(NH4)2SO4、NH4HSO4和NH4NO3是细颗粒物水溶性组分的可能结合方式,Cl-和K+的相关性显著,说明两者具有同源性;固定排放源仍然是乌鲁木齐大气污染物的主要来源,局地大气输送会使大气污染加重。

本文引用格式

赵克蕾 , 刘新春 , 陆辉 , 何清 , 钟玉婷 , 闫景武 . 乌鲁木齐冬季大气细颗粒物水溶性离子特征及来源[J]. 中国沙漠, 2015 , 35(3) : 707 -714 . DOI: 10.7522/j.issn.1000-694X.2014.00062

Abstract

In order to investigate the pollution level of atmospheric fine particles and the characteristics of major water-soluble ions, the fine particles-PM2.5 were collected in Urumqi from January to March in 2013, and water-soluble ions were analyzed by ion chromatograph. Based on the sulfur oxidation ratio (SOR), the correlation of ions and the backward trajectory model, the possible emission sources were discussed. The results showed that the average mass concentration of PM2.5 and the total water-soluble ions were 170.13±51.39 μg·m-3 and 53.47±23.76 μg·m-3 respectively over the entire sampling period. The secondary ions (SO42-, NO3- and NH4+) were the major species in water-soluble ions. The mass concentration of PM2.5 and water-soluble ions had significant differences in different weather conditions. During fog and hazy days the three secondary ions accounted for 81.99% and 86.24% of the total ions concentration, respectively, and the SOR were higher than 0.1. Moreover, during the Spring Festival, large fireworks brought sharp rises in K+ and Cl- concentrations. The correlation coefficient between NH4+ and SO42-, NH4+ and NO3- were 0.975 and 0.748 respectively, and they were mainly in the form of (NH4)2SO4, NH4HSO4 and NH4NO3 in PM2.5. Good correlation was found between Cl- and K+, which indicated that they may have the same emission sources. Stationary source emissions were still the main pollution in Urumqi, and the pollution could be aggravated by local airflows.

参考文献

[1] Koch M.Airborne Fine Particulates in the Environment:A Review of Health Effect Studies, Monitoring Data and Emission Inventories[R].Laxenburg, Austria:International Institute for Applied System Analysis, 2000.http://www.iiasa.ac.at.
[2] Chan Y C, Simpson R W, Mctainsh G H, et al.Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia[J].Atmospheric Environment, 1997, 31:3773-3785.
[3] 亚力昆江·吐尔逊, 迪丽努尔·塔力甫, 阿不力克木·阿布力孜, 等.乌鲁木齐市冬季大气PM10-2.5、PM2.5中水溶性无机离子的化学特征[J].环境工程, 2010, 28(S1):196-199.
[4] Cheng M T, Tsai Y I.Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas[J].Science of the Total Environment, 2000, 263(1):101-114.
[5] 徐锋.乌鲁木齐市2011年冬季 PM2.5/PM10浓度特征分析[J].干旱环境监测, 2012, 26(2):81-84.
[6] 亚力昆江·吐尔逊, 迪丽努尔·塔力甫, 阿布力孜·伊米提, 等.乌鲁木齐市可吸入颗粒物水溶性离子特征及来源解析[J].中国环境监测, 2012, 28(1):72-77.
[7] 王文全, 孙龙仁, 吐尔逊, 等.乌鲁木齐市大气 PM2.5中重金属元素含量和富集特征[J].环境监测管理与技术, 2012, 24(5):23-27.
[8] 王文全, 朱新萍, 郑春霞, 等.乌鲁木齐市采暖期大气PM10及PM2.5中Cd的形态分析[J].光谱学与光谱分析, 2012, 32(1):235-238.
[9] 迪丽努尔·塔力甫, 热比古丽·达木拉, 阿布力孜·伊米提.乌鲁木齐冬季雾天可吸入颗粒物透射电子显微镜研究[J].中国环境监测, 2013, 29(4):107-110.
[10] 赵德山, 洪钟祥.北京地区气溶胶及其化学元素浓度和气象条件的关系[J].大气科学, 1983, 7(2):153-161.
[11] Sun Y, Zhuang G, Tang A, et al.Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J].Environmental Science & Technology, 2006, 40(10):3148-3155.
[12] 时宗波, 贺克斌, 陈雁菊, 等.雾过程对北京市大气颗粒物理化特征的影响[J].环境科学, 2008, 29(3):551-556.
[13] 赵晨曦, 王云琦, 王玉杰, 等.北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J].环境科学, 2014, 35(2):418-427.
[14] 陶燕, 刘亚梦, 米生权, 等.大气细颗粒物的污染特征及对人体健康的影响[J].环境科学学报, 2014, 34(3):592-597.
[15] Li J, Zhuang G, Huang K, et al.Characteristics and sources of air-borne particulate in Urumqi, China, the upstream area of Asia dust[J].Atmospheric Environment, 2008, 42(4):776-787.
[16] 郭宇宏, 高利军, 吕爱华.乌鲁木齐市典型的冬季环境空气重污染过程剖析[J].环境化学, 2006, 25(3):379-380.
[17] 李霞, 杨青, 吴彦.乌鲁木齐地区雪和雨对气溶胶湿清除能力的比较研究[J].中国沙漠, 2003, 23(5):560-564.
[18] 李瑞, 王旭.乌鲁木齐市降水对大气污染的影响[J].沙漠与绿洲气象, 2007, 1(2):13-15.
[19] 张碧云, 张承中, 周变红, 等.西安采暖期 PM2.5及其水溶性无机离子的时段分布特征[J].环境工程学报, 2012, 6(5):1643-1646.
[20] 韩茜, 魏文寿, 刘明哲, 等.气流输送对乌鲁木齐市PM10、PM2.5和PM1.0质量浓度的影响[J].中国沙漠, 2013, 33(1):223-230.
[21] 徐宏辉.北京及周边地区大气气溶胶的质量浓度和无机组分的特征及其来源研究[D].北京:中国科学院大气物理研究所, 2007.
[22] 高晓梅.我国典型地区大气 PM2.5水溶性离子的理化特征及来源解析[D].济南:山东大学, 2012.
[23] Sun Y, Zhuang G, Tang A, et al.Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J].Environmental Science & Technology, 2006, 40(10):3148-3155.
[24] Truex T J, Pierson W R, McKee D E.Sulfate in diesel exhaust[J].Environmental Science & Technology, 1980, 14(9):1118-1121.
[25] Stockwell W R, Watson J G, Robinson N F, et al.The ammonium nitrate particle equivalent of NOx emissions for wintertime conditions in Central California's San Joaquin Valley[J].Atmospheric Environment, 2000, 34(27):4711-4717.
[26] Lee T, Yu X Y, Ayres B, et al.Observations of fine and coarse particle nitrate at several rural locations in the United States[J].Atmospheric Environment, 2008, 42(11):2720-2732.
[27] 张凯, 王跃思, 温天雪, 等.北京大气PM10中水溶性氯盐的观测研究[J].环境科学, 2006, 27(5):825-830.
[28] Müller M, Wolf K J, Smeda A, et al.Release of K, Cl, and S species during co-combustion of coal and straw[J].Energy & Fuels, 2006, 20(4):1444-1449.
[29] Liu X, Van Espen P, Adams F, et al.Biomass burning in southern Africa:individual particle characterization of atmospheric aerosols and savanna fire samples[J].Journal of Atmospheric Chemistry, 2000, 36(2):135-155.
[30] 毛华云.北京大气颗粒物中水溶性硫酸盐、硝酸盐的分布特征[D].北京:北京市环境保护科学研究院, 2009.
[31] 姚青, 韩素芹, 蔡子颖.2011年冬季天津 PM2.5及其二次组分的污染特征分析[J].环境化学, 2013, 32(2):313-318.
[32] 杨凌霄, 侯鲁健, 吕波, 等.济南市大气细颗粒物水溶性组分及大气传输的研究[J].山东大学学报(工学版), 2007, 37(4):98-103.
[33] 杨素霞, 曹军骥, 沈振兴, 等.西安冬、夏季PM2.5中水溶性无机离子的变化特征[J].环境化学, 2012, 31(8):1179-1188.
[34] 佘峰.兰州地区大气颗粒物的化学特征及沙尘天气对其影响研究[D].兰州:兰州大学, 2011.
[35] Stunder B J B.An assessment of the quality of forecast trajectories[J].Journal of Applied Meteorology, 1996, 35(8):1319-1331.
[36] 颜鹏, 房秀梅, 李兴生, 等.临安地区地面SO2变化规律及其源地分析[J].应用气象学报, 1999, 10(3):267-275.
[37] Draxler R R, Hess G D.Description of the HYSPLIT_4 Modeling System[R].NOAA Technical Memorandum ERL ARL-224, 1997.
[38] 张艳燕.乌鲁木齐冬季典型空气污染状况的气象条件数值模拟研究[D].南京:南京信息工程大学, 2011.
文章导航

/