img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

敦煌盆地降水稳定同位素特征及水汽来源

  • 郭小燕 ,
  • 冯起 ,
  • 李宗省 ,
  • 郭瑞 ,
  • 贾冰
展开
  • 1. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
郭小燕(1986-), 女, 甘肃陇西人, 博士研究生, 主要从事寒旱区水文地球化学研究。Email:guoxy2012@lzb.ac.cn

收稿日期: 2014-06-08

  修回日期: 2014-07-07

  网络出版日期: 2015-05-20

基金资助

中国科学院重点部署项目(KZZD-EW-04-05);国家自然科学基金面上项目(30970492);国家自然科学基金重点项目(91025002);国家自然科学基金青-科学基金项目(41201024)

Variation of Stable Isotopes and Moisture Sources in Precipitation at the Dunhuang Basin in Northwest China

  • Guo Xiaoyan ,
  • Feng Qi ,
  • Li Zongxing ,
  • Guo Rui ,
  • Jia Bing
Expand
  • 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-06-08

  Revised date: 2014-07-07

  Online published: 2015-05-20

摘要

基于敦煌盆地2012年11月至2013年11月降水氢、氧稳定同位素数据 (δD、δ18O和d-excess),结合GNIP降水同位素监测资料和HYSPLIT 4模型对降水后向气团传输路径模拟结果,对敦煌盆地降水稳定同位素特征及水汽来源进行研究。结果表明:敦煌盆地降水δD和δ18O存在明显的季节效应,即降水δD和δ18O具有夏高冬低的变化特征;同时降水δD和δ18O表现出显著的温度效应,温度每升高1 ℃,δD增加6.89‰,δ18O增加0.92‰。敦煌盆地局地大气水线(LMWL)为δD=7.45δ18O+2.72(R2=0.98),受降水二次蒸发的影响,其斜率和截距均低于全球大气水线(GMWL)。降水d-excess受当地气温和相对湿度的影响,冬半年(11月至次年4月)偏正,夏半年(5-10月)偏负。从全年来看,敦煌盆地降水水汽主要来源于西风输送,冬季和春季受极地气团的影响,夏季部分降水事件受西南季风和局地再循环水汽的影响。

本文引用格式

郭小燕 , 冯起 , 李宗省 , 郭瑞 , 贾冰 . 敦煌盆地降水稳定同位素特征及水汽来源[J]. 中国沙漠, 2015 , 35(3) : 715 -723 . DOI: 10.7522/j.issn.1000-694X.2014.00076

Abstract

In this study, event-based precipitation samples collected from October 2012 to October 2013 in the Dunhuang Basin in Northwest China, GNIP data and HYSPLIT model have been used to constrain the stable isotopes variations and moisture sources. The δD, δ18O and d-excess showed distinctively seasonal variations: with more positive δD, δ18O and lower d-excess values in summer and more negative δD, δ18O and higher d-excess values in winter. The relationship between local air temperature and stable isotopes in precipitation exhibited significant positive correlations, with a gradient of 6.89‰·℃-1 for δD and 0.92‰·℃-1 for δ18O. The local meteoric water line (LMWL), established as δD=7.45δ18O+2.72(R2=0.98), had a lower slope and intercept than the global meteoric water line (GMWL), which was attributed to the effect of secondary evaporation, especially in summer. The variability of d-excess values in the Dunhuang Basin was mainly induced by the changes of air temperature and relative humidity. Generally, the moisture in the Dunhuang Basin was dominantly derived from westerly air masses all year round, and the region can receives polar air mass moisture transport in winter and spring, while some precipitation events was attributed to the water vapor transport from the southwest monsoon and local recycle moisture.

参考文献

[1] 蓝永超, 丁永建, 沈永平, 等.河西内陆河流域出山径流对气候转型的响应[J].冰川冻土, 2003, 25(2):147-152.
[2] 高前兆, 仵彦卿.河西内陆河流域的水循环分析[J].水科学进展, 2004, 15(3):391-396.
[3] 谢自楚, 王欣, 康尔泗, 等.中国冰川径流的评估及其未来50年变化趋势预测[J].冰川冻土, 2006, 28(4):457-466.
[4] 王璞玉, 李忠勤, 高闻宇, 等.气候变化背景下近50年来黑河流域冰川资源变化特征分析[J].资源科学, 2011, 33(3):399-407.
[5] 高鑫, 张世强, 叶柏生, 等.河西内陆河流域冰川融水近期变化[J].水科学进展, 2011, 2(3):345-350.
[6] 何建华, 付素静, 马金珠, 等.北大河流域地下水化学演化与补给特征[J].中国沙漠, 2011, 31(6):1630-1638.
[7] 席海洋, 冯起, 司建华, 等.黑河下游绿洲NDVI对地下水位变化的响应研究[J].中国沙漠, 2013, 33(2):574-582.
[8] 张华安, 王乃昂, 李卓仑, 等.巴丹吉林沙漠东南部湖泊和地下水的氢氧同位素特征[J].中国沙漠, 2011, 31(6):1623-1629.
[9] 李文赞, 严平, 刘永刚, 等.库姆塔格沙漠东北缘浅层地下水补给来源[J].中国沙漠, 2011, 31(6):1617-1622.
[10] 张应华, 仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠, 2009, 29(2):370-375.
[11] Ma J, Wang X, Edmunds W.The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China-a case study of the Shiyang River Basin[J].Journal of Arid Environments, 2005, 61:277-295.
[12] Zhu G, Li Z, Su Y, et al.Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China[J].Journal of Hydrology, 2007, 333:239-251.
[13] Ma J Z, He J H, Qi S, et al.Groundwater recharge and evolution in the Dunhuang Basin, northwestern China[J].Applied Geochemistry, 2013, 28:19-31.
[14] 周海, 郑新军, 唐立松, 等.盐生荒漠土壤水稳定氢、氧同位素组成季节动态[J].中国沙漠, 2014, 34(1):162-169.
[15] Araguás-Araguás L, Froehlich K, Rozanski K.Stable isotope composition of precipitation over Southeast Asia[J].Journal of Geophysical Research, 1998, 103(D22):28721-28742.
[16] Hughes C, Crawford J.Spatial and temporal variation in precipitation isotopes in the Sydney Basin, Australia[J].Journal of Hydrology, 2013, 489:42-55.
[17] 田立德, 姚檀栋, 孙维贞, 等.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学(D辑), 2001, 31(3):214-220.
[18] 姚檀栋, 孙维贞, 蒲健辰, 等.内陆河流域系统降水中的稳定同位素[J].冰川冻土, 2000, 22(1):15-22.
[19] Tian L D, Yao T D, MacClune K, et al.Stable isotopic variations in west China:a consideration of moisture sources[J].Journal of Geophysical Research, 2007, 112:D10112.
[20] Rozanski K, Johnsen S J, Schotterer U, et al.Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives[J].Hydrological Sciences Journal, 1997, 42(5):725 745.
[21] McCarroll D, Loader N.Stable isotopes in tree rings[J].Quaternary Science Reviews, 2004, 23:771-801.
[22] Zhang J W, Chen F H, Holmes J, et al.Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China:a review and synthesis[J].Quaternary Science Reviews, 2011, 30(15-16):1973-1987.
[23] 张应华, 仵彦卿.黑河流域中上游地区降水中氢氧同位素与温度关系研究[J].干旱区地理, 2007, 30(1):16-21.
[24] 张应华, 仵彦卿.黑河流域中上游地区降水中氢氧同位素研究[J].冰川冻土, 2009, 31(1):34-39.
[25] Wu J K, Ding Y J, Ye B S, et al.Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China[J].Environmental Earth Sciences, 2010, 61:1123-1134.
[26] Zhao L J, Yin L, Xiao H L, et al.Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J].Chinese Science Bulliten, 2011, 56:406-416.
[27] Ma J Z, Zhang P, Zhu G F, et al.The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China[J].Journal of Hydrology, 2012, 436/437:92-101.
[28] 蓝永超, 刘金鹏, 丁宏伟, 等.1960-2012年河西内陆河上游山区降水量变化及其区域性差异分析[J].冰川冻土, 2013, 35(6):1474-1480.
[29] Dansgaard W.Stable isotopes in precipitation[J].Tellus B, 1964, 16:436-468.
[30] Craig H.Isotopic variations in meteoric waters[J].Science, 1961, 133:1702-1703.
[31] Gat J.Paleoclimate conditions in the Levant as revealed by the isotopic composition of paleowaters[J].Israel Meteorological Research Papers, 1981, 3:13-28.
[32] Jonsson C, Leng M, Rosqvist C, et al.Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from northern Sweden[J].Journal of Hydrology, 2009, 376(1/2):143-151.
[33] Froehlich K, Gibson J, Aggarwal P.Deuterium excess in precipitation and its climatological significance[C]//Proceedings of Study of Environmental Change Using Isotope Techniques.Vienna, Austria:IAEA, 2002:54-66.
[34] Merlivat L, Jouzel J.Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J].Journal of Geophysical Research, 1979, 84:5029-5033.
[35] 杨玉忠, 吴青柏, 贠汉伯.北麓河多年冻土区降水及河水稳定同位素特征分析[J].水科学进展, 2013, 24(6):778-785.
文章导航

/