img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应

  • 郭群 ,
  • 李胜功 ,
  • 胡中民 ,
  • 赵玮 ,
  • 王敏
展开
  • 1. 中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;
    2. 中国科学院大学, 北京 100049;
    3. 环境保护部环境与经济政策研究中心, 北京 100029
郭群(1984-), 女, 山东临沂人, 博士后, 主要从事干旱区草地生态系统生态研究。Email:guoq.10b@igsnrr.ac.cn

收稿日期: 2015-02-04

  修回日期: 2015-04-06

  网络出版日期: 2015-05-20

基金资助

国家自然科学基金项目(31400425, 41301043);中国科学院地理科学与资源研究所青-人才项目(2013RC203);科技部科技支撑项目(2013BAC03B03);中国科学院青-创新促进会项目

Response of Gross Primary Productivity to Water Availability at Different Temporal Scales in a Typical Steppe in Inner Mongolia Temperate Steppe

  • Guo Qun ,
  • Li Shenggong ,
  • Hu Zhongmin ,
  • Zhao Wei ,
  • Wang Min
Expand
  • 1. Key Laboratory of Ecosystem Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Policy Research Center for Environment and Economy, Ministry of Environmental Protection of the People's Republic of China, Beijing 100029, China

Received date: 2015-02-04

  Revised date: 2015-04-06

  Online published: 2015-05-20

摘要

水分是干旱、半干旱区草地生态系统生产力的主要限制因素,但水分如何影响生产力的季节内变异,以往研究相对不足。本研究以内蒙古温带典型草原为研究对象,基于多通道自动原位监测箱系统获得的生态系统日尺度总初级生产力(GPP)及遥感植被归一化指数估算年尺度的地上净初级生产力数据,在不同时间尺度上研究了水分对生产力的影响。结果表明:年降水量对该典型草原草地生态系统地上净初级生产力年际变异无显著影响,但土壤水分显著影响GPP的季节变异,土壤水分解释了GPP季节变异的22%;其他环境因子对生产力的季节变异也有一定影响;温度是生态系统处于干旱时GPP的主要限制因素,GPP随温度的升高而降低;而辐射是生态系统处于湿润时GPP的主要限制因素,GPP随辐射的升高而升高。本研究结果将有利于提升未来降水格局改变对草地生态系统生产力影响的认识。

关键词: 温带草原; 生产力; 降水

本文引用格式

郭群 , 李胜功 , 胡中民 , 赵玮 , 王敏 . 内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应[J]. 中国沙漠, 2015 , 35(3) : 616 -623 . DOI: 10.7522/j.issn.1000-694X.2015.00065

Abstract

Water is a main driver to the productivity of grassland in arid and semi-arid area, however, we have quite limit knowledge about how water availability impacts the intra-annual variations of productivity. In this study, we quantified the effects of water availability on productivity at different temporal scales based on daily gross primary productivity (GPP) measured by a multichannel automated chamber system and annual aboveground net primary productivity (ANPP) evaluated by normalized difference vegetation index. Our results showed that there were no significant effects of annual precipitation on the inter-annual variations of ANPP. However, we found a similar seasonal dynamics of GPP with the soil water content, and soil water content remarkably affected GPP. Soil water content contributed to the 22% intra-annual variations of GPP. Our results also demonstrated that besides soil water, there were other environmental factors that affected the intra-annual variations of GPP. Air temperature determined the intra-annual variations of GPP when the soil water condition was relatively dry, and GPP decreased with increasing air temperature. Radiation was the dominant factor to affect the intra-annual variations of GPP when the soil water condition was relatively wet, and GPP increased with increasing radiation. The effects of other environmental factors on GPP may explain the weaker explanation power of annual precipitation to the inter-annual variations of productivity. Our results may help to thoroughly understand the effects of altering precipitation regimes on grassland productivity in the future.

参考文献

[1] Knapp A K, Smith M D.Variation among biomes in temporal dynamics of aboveground primary production[J].Science, 2001, 291(5503):481-484.
[2] Noy-Meir I.Desert ecosystems: environment and producers[J].Annual Review of Ecology and Systematics, 1973, 4:23-51.
[3] Lehouerou H N, Bingham R L, Skerbek W.Relationship between the variability of primary production and the variability of annual precipitation in world arid lands[J].Journal of Arid Environments, 1988, 15(1):1-18.
[4] Beier C, Beierkuhnlein C, Wohlgemuth T, et al.Precipitation manipulation experiments-challenges and recommendations for the future[J].Ecology Letters, 2012, (15):899-911.
[5] Briggs J M, Knapp A K.Interannual variability in primary production in tallgrass prairie:climate, soil moisture, topographic position, and fire as determinants of aboveground biomass[J].American Journal of Botany, 1995, 82(8):1024-1030.
[6] Paruelo J M, Lauenroth W K, Burke I C, et al.Grassland precipitation-use efficiency varies across a resource gradient[J].Ecosystems, 1999, 2(1):64-68.
[7] Bai Y F, Wu J G, Xing Q, et al.Primary production and rain use efficiency across a precipitation gradient on the mongolia plateau[J].Ecology, 2008, 89(8):2140-2153.
[8] Hu Z M, Yu G R, Fan J W, et al.Precipitation-use efficiency along a 4500-km grassland transect[J].Global Ecology and Biogeography, 2010, 19(6):842-851.
[9] Yang, Y H, Fang J Y, Ma W H, et al.Relationship between variability in aboveground net primary production and precipitation in global grasslands[J].Geophysical Research Letters, 2008, 35(23):L23710.
[10] Fan J W, Wang K, Harris W, et al.Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia[J].Journal of Arid Environments, 2009, 73(4-5):521-528.
[11] McNaughton S J, Sala O E.Comparative ecology of African and South-American arid to subhumid ecosystems[C]//37th Annual Systematics Symposium:Biological Relationships between Africa and South America.Missouri, USA:Yale Univ Press, 1993:548-567.
[12] Huxman T E, Smith M D, Fay P A, et al.Convergence across biomes to a common rain-use efficiency[J].Nature, 2004, 429(6992):651-654.
[13] Swemmer A M, Knapp A K, Snyman H A.Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands[J].Journal of Ecology, 2007, 95(4):780-788.
[14] Knapp A K, Burns C E, Fynn R W, et al.Convergence and contingency in production-precipitation relationships in North American and South African C4 grasslands[J].Oecologia, 2006, 149(3):456-64.
[15] Reynolds J F, Kemp P R, Ogle K, et al.Modifying the 'pulse-reserve' paradigm for deserts of North America:precipitation pulses, soil water, and plant responses[J].Oecologia, 2004, 141(2):194-210.
[16] Tan Z H, Zhang Y P, Liang N S, et al.Soil respiration in an old-growth subtropical forest:patterns, components, and controls[J].Journal of Geophysical Research-Atmospheres, 2013, 118(7):2981-2990.
[17] Scurlock J M O, Johnson K, Olson R J.Estimating net primary productivity from grassland biomass dynamics measurements[J].Global Change Biology, 2002, 8(8):736-753.
[18] Guo Q, Hu Z M, Li S G, et al.Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland:effects of mean annual precipitation and its seasonal distribution[J].Global Change Biology, 2012, 18(12):3624-3631.
[19] Hu Z M, Yu G R, Zhou Y L, et al.Partitioning of evapotranspiration and its controls in four grassland ecosystems:application of a two-source model[J].Agricultural and Forest Meteorology, 2009, 149(9):1410-1420.
[20] 赵学勇, 刘良旭, 王玮, 等.降水波动对荒漠草原生产力的影响[J].中国沙漠, 2014, 34(6):1486-1495.
[21] Guo R, Wang X K, Ouyang Z Y, et al.Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China[J].Journal of Environmental Sciences-China, 2006, 18(5):1024-1030.
[22] O'Connor T G, Haines L M, Snyman H A.Influence of precipitation and species composition on phytomass of a semi-arid African grassland[J].Journal of Ecology, 2001, 89(5):850-860.
[23] 苏占胜, 陈晓光, 黄峰, 等.宁夏农牧交错区(盐池)草地生产力对气候变化的响应[J].中国沙漠, 2007, 27(3):430-435.
[24] Lauenroth W K, Sala O E.Long-term forage production of North-American shortgrass steppe[J].Ecological Applications, 1992, 2(4):397-403.
[25] Jobbágy E G, Sala O E.Controls of grass and shrub aboveground production in the Patagonian steppe[J].Ecological Applications, 2000, 10(2):541-549.
[26] HaoY B, Kang X M, Wu X, et al.Is frequency or amount of precipitation more important in controlling CO2 fluxes in the 30-year-old fenced and the moderately grazed temperate steppe[J].Agriculture, Ecosystems & Environment, 2013, 171:63-71.
[27] Hooper D U, Johnson L.Nitrogen limitation in dryland ecosystems Responses to geographical and temporal variation in precipitation[J].Biogeochemistry, 1999, 46:247-293.
[28] Xia J Y, Niu S L, Wan S Q.Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J].Global Change Biology, 2009, 15(6):1544-1556.
[29] Niu S L, Yang H J, Zhang Zh, et al.Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe[J].Ecosystems, 2009, 12(6):915-926.
[30] 何玉惠, 刘新平, 谢忠奎.氮素添加对黄土高原荒漠草原草本植物物种多样性和生产力的影响[J].中国沙漠, 2014, 35(1):66-71.
[31] Austin A T, Yahdjian L, Stark J M, et al.Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J].Oecologia, 2004, 141(2):221-235.
[32] Belnap J, Phillips S L, Miller M E.Response of desert biological soil crusts to alterations in precipitation frequency[J].Oecologia, 2004, 141(2):306-16.
[33] Thomey M L, Collins S L, Vargas, R, et al.Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland[J].Global Change Biology, 2011, 17(4):1505-1515.
[34] Heisler-White J L, Blair J M, Kelly E F, et al.Contingent productivity responses to more extreme rainfall regimes across a grassland biome[J].Global Change Biology, 2009, 15(12):2894-2904.
[35] Heisler-White J L, Knapp A K, Kelly E F.Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland[J].Oecologia, 2008, 158(1):129-140.
[36] Knapp A K, Fay P A, Blair J M, et al.Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland[J].Science, 2002, 298:2201-2205.
[37] Harper C W, Blair J M, Fay P A, et al.Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem[J].Global Change Biology, 2005, 11(2):322-334.
[38] Fay P A, Carlisle J D, Knapp A K, et al.Productivity responses to altered rainfall patterns in a C4-dominated grassland[J].Oecologia, 2003, 137(2):245-251.
[39] Hu Z M, Fan J W, Zhong H P, et al.Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland[J].Science in China Series D:Earth Sciences, 2007, 50(5):754-764.
文章导航

/