img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
古气候与环境演变

腾格里沙漠南缘末次间冰期5e亚段的微量元素特征及其反映的古气候

  • 孟洁 ,
  • 温小浩 ,
  • 李保生 ,
  • 牛东风 ,
  • 赵占仑 ,
  • 孙业凤 ,
  • 杨庆江
展开
  • 1. 华南师范大学 地理科学学院, 广东 广州 510631;
    2. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室, 陕西 西安 710075
孟洁(1991-), 女, 山西祁县人, 硕士研究生, 自然地理学专业。Email:414149018@qq.com

收稿日期: 2014-10-30

  修回日期: 2014-12-08

  网络出版日期: 2015-05-20

基金资助

国家自然科学基金青-科学基金项目(41301004);国家自然科学基金重大项目(41290250);教育部高等学校博士点专项新教师类基金(20094407120004)

Trace Element Characteristics and Indicative Paleoclimate during Marine Isotope Stage 5e (MIS5e) in the Southern Tengger Desert, Northwestern China

  • Meng Jie ,
  • Wen Xiaohao ,
  • Li Baosheng ,
  • Niu Dongfeng ,
  • Zhao Zhanlun ,
  • Sun Yefeng ,
  • Yang Qinjiang
Expand
  • 1. School of Geographical Science, South China Normal University, Guangzhou 510631, China;
    2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China

Received date: 2014-10-30

  Revised date: 2014-12-08

  Online published: 2015-05-20

摘要

腾格里沙漠南缘土门剖面TMS5e层段由16层风成砂、11层湖积黄土和5层湖相沉积构成,其年代相当于深海氧同位素5e。分析结果表明,TMS5e的10种微量元素的含量依次为P > Mn > Sr > Rb > V > Cr > Zn > Ni > Cu > Nb。就平均值来看,古流动沙丘砂的各微量元素含量最低,其次为古半固定-固定沙丘砂,但两者的各微量元素含量都明显低于整个TMS5e层段相应平均值;黄土状亚砂土微量元素含量稍低于整个TMS5e层段相应平均值;湖相沉积和湖积黄土的各微量元素含量相差较小,且明显都高于整个TMS5e层段、古流动沙丘砂和黄土状亚砂土的平均值。土门剖面TMS5e层段的微量元素指示的MIS5e腾格里沙漠南缘的气候是不稳定的,经历了14.5次暖湿与冷干交替的气候波动,且可划分为TMS5e5(139~129.30 ka BP)、TMS5e4(129.30~124 ka BP)、TMS5e3(124~119.50 ka BP)、TMS5e2(119.5~116.5 ka BP)和TMS5e1(116.5~113.70 ka BP)等5个亚段,分别可与格陵兰GRIP冰芯氧同位素所反映的MIS5e5、MIS5e4、MIS5e3、MIS5e2、MIS5e1等气候波动在性质和相位上相对应。

本文引用格式

孟洁 , 温小浩 , 李保生 , 牛东风 , 赵占仑 , 孙业凤 , 杨庆江 . 腾格里沙漠南缘末次间冰期5e亚段的微量元素特征及其反映的古气候[J]. 中国沙漠, 2015 , 35(3) : 592 -601 . DOI: 10.7522/j.issn.1000-694X.2014.00210

Abstract

The TMS5e sequence from the Tumen Section, at the southern edge of Tengger Desert in the northwestern China, is synchronous with Marine Isotope Stage 5e (MIS5e). It consists of 16 layers of aeolian dune sands, 11 layers of lacustrine loess-like facies, and 5 layers of lacustrine facies. The results of trace elements analysis shows that the concentrations of 10 trace elements in TMS5e varies as P > Mn > Sr > Rb > V > Cr > Zn > Ni > Cu > Nb. The palaeo-mobile dune sands and palaeo-fixed to semi-fixed dune sands have lower contents of trace elements than those of the whole TMS5e sequence. The loess-like sandy loams also have slightly lower contents of trace elements than those of the whole TMS5e sequence.The average contents of the lacustrine loess-like faciesare similar to those of lacustrine facies, both of which have higher contents than those of the three aeolian dune sands. The contents of trace elements in the TMS5e sequence indicate that the climate in southern Tengger Desert during MIS5e significantly varied within at least 14.5 warm-cold fluctuations.Such variations could be divided into five stages: TMS5e5 (139.0-129.3 ka BP), TMS5e4 (129.3-124 ka BP), TMS5e3 (124.0-119.5 ka BP), TMS5e2 (119.5-116.5 ka BP), and TMS5e1 (116.5-113.7 ka BP), roughly consistent with MIS5e5, MIS5e4, MIS5e3, MIS5e2 and MIS5e1 in the GRIP ice core record, respectively.

参考文献

[1] Andersen K K, Azuma N, Barnola J M, et al.High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J].Nature, 2004, 431:147-151.
[2] Grootes P M, Stulver M, Whlte J W C, et al.Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J].Nature, 1993, 366:552-554.
[3] Keigwin L D, Curry W B, Lehman S J.The role of the deep ocean in North Athantic climate change between 70 and 130 kyr ago[J].Nature, 1994, 371:323-325.
[4] Frogley M R, Tzedakis P C, Heaton T H E.Climate variability in northwest Greece during the Last Interglacial[J].Science, 1999, 285:1886-1889.
[5] Dansgaard W, Johnsen S J, Clausen H B, et al.Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature, 1993, 365.
[6] Field M H, Huntley B, Muller H.Eemian climate fluctuations observed in a European pollen record[J].Nature, 1994, 371:771-783.
[7] Thouveny N, de Beaulieu J L, Bonifay E.Climate variation in Europe over the past 140 kyr deduced from rock magnetism[J].Nature, 1994, 371:503-506.
[8] Lauritzen S E.High-resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems[J].Quaternary Research, 1995, 43(2):133-146.
[9] Linsley B K.Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150, 000 years[J].Nature, 1996, 380:234-237.
[10] Fronval T, Jansen E.Rapid changes in ocean circulation and heat flux in t he Nordic seas during the last interglacial period[J].Nature, 1996, 383:806-810.
[11] Johnsen S J, Clausen H B, Dansgaard W.The Eemstable isotope record along the GRIP ice core and its interpretation[J].Quaternary Research, 1995, 43:117-124.
[12] Wang Y J, Cheng H, Edwards R L.Timing, duration, and transitions of the Last Interglacial Asian Monsoon[J].Science, 2001, 294:2345-2348.
[13] 丁仲礼, 任剑璋, 刘东生, 等.晚更新世季风-沙漠系统千年尺度的不规则变化及其机制问题[J].中国科学(D辑:地球科学), 1996, 26(5):385-391.
[14] An Z S, Porter S C.Millennial-scale climatic oscillations during the last interglaciation in central China[J].Geology, 1997, 25:603-606.
[15] 张平中, 王先彬, 王苏民, 等.青藏高原东部末次间冰期气候不稳定性分析[J].科学通报, 1998, 43(1):17-21.
[16] 管东红, 奚晓霞, 郝永萍, 等.北塬剖面碳酸钙记录的末次间冰期气候不稳定性[J].冰川冻土, 1996, 18(2):119-124.
[17] 古浪县地方志编辑委员会.古浪县志.兰州[M].甘肃:甘肃文化出版社, 2000:45-142.
[18] Mj A.An Introduction to Optical Dating[M].New York, USA:Oxford Science Publications, 1998.
[19] Martinson D G, Pisias N G, Hays J D.Age dating and the orbital theory of the ice ages development of a high-resolution 0 to 300, 000-year chronostratigraphy[J].Quaternary Research, 1987, 27:1-29.
[20] 管清玉, 潘保田, 高红山, 等.高分辨率黄土剖面记录的末次间冰期东亚季风的不稳定性特征[J].中国科学(D辑:地球科学), 2007, 37(1):86-93.
[21] 高尚玉, 董光荣, 李保生, 等.萨拉乌苏河第四纪地层中化学元素的迁移和聚集与古气候的关系[J].地球化学, 1985, (3):269-276.
[22] 靳建辉, 曹相东, 李志忠, 等.艾比湖周边灌丛沙堆风沙沉积记录的气候环境演化[J].中国沙漠, 2013, 33(5):1314-1323.
[23] 文启忠, 刁桂仪.第四纪沉积地球化学研究的若干进展[J].矿物岩石地球化学通讯, 1987, (4):196-199.
[24] 刘东生, 安芷生, 袁宝印.中国的黄土与风尘堆积[J].第四纪研究, 1985, (1):113-125.
[25] 罗万银, 董治宝, 钱广强, 等.戈壁表层沉积物地球化学元素组成及其沉积意义[J].中国沙漠, 2014, 34(6):1441-1453.
[26] 李明启, 靳鹤龄, 董光荣, 等.萨拉乌苏河流域微量元素揭示的气候变化[J].中国沙漠, 2006, 26(2):172-179.
[27] 李后信, 李保生, 祝一志, 等.150 ka B.P.以来萨拉乌苏河流域主元素变动旋回[J].地球化学, 2002, (5):424-431.
[28] Robert L C.The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, U.S.A.[J].Chemical Geology, 1994, 113:327-343.
[29] 温小浩, 李保生, 李森, 等.2.5 ka BP以来额济纳绿洲沙丘的粒度特征及其反映的沉积过程[J].地质学报, 2005, 79(5):710-718.
[30] 李卓仑, 王乃昂, 李育, 等.花海古湖泊外源碎屑矿物含量揭示的河西走廊早、中全新世降水变化[J].中国沙漠, 2014, 34(6):1480-1485.
[31] 高尚玉, 陈渭南, 靳鹤龄, 等.全新世中国季风区西北缘沙漠演化初步研究[J].中国科学(B辑), 1993, 23(2):202-208.
[32] Wang Yongjin, ChengHai, Edwards R L, et al.A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China[J].Science, 2001, 294(555):2345-2348.
[33] Mayewski P A, M eeker L D, Twickler M S, et al.Major features and forcing of high latitude northern hemisphere atmospheric circulation usinga 110, 000-year long glaciochemical series[J].Journal of Geophysical Research, 1997, 102(26):345-366.
[34] Stuiver M, Braziunas T.Sun, ocean, climate and atmospheric14CO2:an evaluation of causal and spectral relationship[J].Holocene, 1993, (3):289-305.
文章导航

/