黑河流域下游盆地与周边地区的水力联系是当地生态建设的关键问题。巴丹吉林沙漠与黑河流域下游盆地存在长达180 km的交界线,由于水文地质调查程度低,其地下水的流场不清楚,黑河流域下游天然水均衡账本中存在不确定因素。针对这个问题,在已有水文地质调查基础上,开展了巴丹吉林沙漠区域尺度的水位调查和钻孔勘探,获得461个已知水位点和63个水位约束点,绘制出巴丹吉林沙漠浅层地下水一级近似等水位线图。结果表明:研究区地下水位具有东南高、西北低的特点,水力梯度0.6‰~4.0‰,沙漠东南部地区的湖泊对地下水流场具有扰动作用,但没有改变宏观的地下水流向;第四系松散砂层是巴丹吉林沙漠浅层地下水的主要含水层,根据现有钻孔和物探资料,第四系沉积物在沙漠腹地较厚、边缘较薄,覆盖厚度普遍超过100 m,联通了沙漠和黑河流域下游地区的地下水;巴丹吉林沙漠的地下水补给黑河下游的古日乃湖、额济纳旗平原和拐子湖地区,地下水侧向出境流量为(0.61~1.97)×108 m3·a-1,其中进入古日乃湖平原的流量达到(0.33~1.06)×108 m3·a-1。计算结果仍然受到一些不确定因素的影响。
The hydraulic connection between the lower sub-basin of the Heihe River Basin (HRB) and the surrounding area is a key problem for the local ecological construction project. The Badain Jaran Desert (BJD) has a 180-kilometer borderline with the HRB lower sub-basin, but its groundwater flow patterns are unclear due to lack of hydrogeology survey. It produces an uncertain item in the water budget of the HRB lower sub-basin. To solve the problem, groundwater level measuring and borehole exploring in BJD were carried out based on previous hydrogeological and geophysical survey data, the first-order approximate water table contours were drawn for shallow groundwater according to 461 known-points and 63 semi-known points. The results indicated that the ground water level in BJD features a decline trend from southeast to northwest with a hydraulic gradient 0.6‰-4.0‰. Lakes in the southeast area could disturb the local groundwater flow field but could not alter the macro-direction of groundwater flow. The Quaternary sands consist the main aquifer of shallow groundwater in the BJD, the total thickness of these sediments is generally larger than 100 m, thick in the central region and thin in the edge. It connects groundwater in the BJD and in the HRB lower sub-basin. The BJD groundwater recharges to the plain areas of the Gurinai Lake、Ejinaqi in the HRB lower sub-basin and the Guaizi Lake area, with a total runoff (0.61-1.97)×108 m3·a-1. Among the total runoff, there is (0.33-1.06)×108 m3·a-1 runoff is contributed to the Gurinai Lake Plain. The estimation results were still influenced by several uncertain factors.
[1] 武选民, 史生胜, 黎志恒, 等.西北黑河下游额济纳盆地地下水系统研究(上)[J].水文地质工程地质, 2002, 29(1):16-20.
[2] 丁宏伟, 王贵玲.巴丹吉林沙漠湖泊形成的机理分析[J].干旱区研究, 2007, 24(1):1-7.
[3] 仵彦卿, 张应华, 温小虎, 等.中国西北黑河流域水文循环与水资源模拟[M].北京:科学出版社, 2010:101-131.
[4] 陈建生, 赵霞, 盛雪芬, 等.巴丹吉林沙漠湖泊群与沙山形成机理研究[J].科学通报, 2006, 51(23):2789-2796.
[5] 王涛.巴丹吉林沙漠形成演变的若干问题[J].中国沙漠, 1990, 10(1):29-40.
[6] 刘陶, 杨小平, 董巨峰, 等.巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J].中国沙漠, 2010, 30(6):1285-1291.
[7] 张伟民, 王涛.巴丹吉林沙漠高大沙山形成演化初步探讨[J].中国沙漠, 2005, 25(2):281-286.
[8] 马宁, 王乃昂, 李卓伦, 等.1960-2009年巴丹吉林沙漠南北缘气候变化分析[J].干旱区研究, 2011, 28(2):242-250.
[9] 王乃昂, 马宁, 陈红宝, 等.巴丹吉林沙漠腹地降水特征的初步分析[J].水科学进展, 2013, 24(2):153-160.
[10] 朱震达, 吴正, 刘恕, 等.中国沙漠概论[M].北京:科学出版社, 1980:73-76.
[11] 吴泰然, 何国琦.内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J].地质学报, 1993, 67(2):98-108.
[12] 刘建利, 申安斌, 陈小龙.大地电磁测深方法在内蒙古西部银根-额济纳旗盆地石炭系-二叠系油气地质调查中的应用[J].地质通报, 2011, 31(6):993-1000.
[13] 严云奎, 袁炳强, 杨高印, 等.内蒙古西部银根-额济纳旗盆地重力场与断裂构造的特征[J].地质通报, 2011, 31(12):1962-1968.
[14] DEM数字高程模型数据服务系统[DB/OL].中国科学院计算机网络信息中心.2009, http://datamirror.csdb.cn/admin/datademMain.jsp.
[15] 王旭升, 胡晓农, 张竞, 等.巴丹吉林沙漠钻孔剖面数据[DB/OL].寒区旱区科学数据中心.北京:中国地质大学(北京), 2014.doi:10.3972/heihe.075.2014.db.
[16] 卢会婷.巴丹吉林沙漠苏木吉林湖区水分平衡研究[D].北京:中国地质大学(北京), 2014:24-42.
[17] 郭峰, 孙东怀, 王飞, 等.巴丹吉林沙漠地层序列的粒度分布及其组分成因分析[J].海洋地质与第四纪地质, 2014, 34(1):165-173.
[18] 代建翔.巴丹吉林沙漠包气带渗透性及其影响因素研究[D].北京:中国地质大学(北京), 2014:40-51.
[19] 汪民, 殷跃平, 文冬光等.水文地质手册[M].第2版.北京:科学出版社, 2012:680-683.
[20] 王旭升, 胡晓农, 金晓媚, 等.巴丹吉林沙漠地下水与湖泊的相互作用[J].地学前缘, 2014, 21(4):91-99.
[21] 马宁, 王乃昂, 赵力强, 等.巴丹吉林沙漠腹地降水事件后的沙山蒸发观测[J].科学通报, 2014, 59(7):615-622.
[22] 杨文斌, 唐进年, 梁海荣, 等.我国典型沙漠(地)流动风沙土的深层渗漏量及动态变化[J].中国科学(地球科学), 2014, 44(9):2052-2061.