img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

两种背景场改进方案对新疆“狭管”风区风场预报性能评估

  • 辛渝 ,
  • 于晓晶 ,
  • 陈洪武
展开
  • 1. 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002;
    2. 新疆气候中心, 新疆 乌鲁木齐 830002
辛渝(1969-),女,重庆人,硕士,正研级高工,主要从事风能、太阳能等气候资源开发利用和风工程研究。Email: learnerxy@163.com

收稿日期: 2014-06-17

  修回日期: 2014-11-12

  网络出版日期: 2015-07-20

基金资助

国家公益性行业(气象)科研专项项目(GYHY201006035);新疆维吾尔自治区气象局气象科技研究课题(200903)

Verification of Wind Forecasts at Funneling Wind Area in Xinjiang by Two Background Field Improving Schemes

  • Xin Yu ,
  • Yu Xiaojing ,
  • Chen Hongwu
Expand
  • 1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
    2. Xinjiang Climate Center, Urumqi 830002, China

Received date: 2014-06-17

  Revised date: 2014-11-12

  Online published: 2015-07-20

摘要

为了客观评价Wind Energy Resource Assessment System /CMA(简称WERAS/CMA)系统(CTL方案)和将其中的客观分析法改成四维同化系统(简称FDDA方案)对既受狭管效应影响、又受湖陆风影响的阿拉山口和达坂城-小草湖风区起伏下垫面中的风能资源数值模拟的优劣,根据2009年7、10月和2010年1、4月 12UTC的NCEP再分析资料以及同期CMACAST下发的WMO各种常规观测资料开展了风场预报效果对比实验。结果表明:(1)对复杂区域而言,两种方案比过去单纯只用中尺度模式进行风场模拟的平均相对误差至少减小10%;(2)总体而言,两种方案对70 m高度处的风速模拟误差要大于30、50、100 m处的误差,在受多种环流尺度影响区域,模式在刻画平均风速/风向频率廓线方面的缺陷均极其相似;(3)在70 m高度上,两种方案5 m·s-1以内的风速平均相对误差可达60%~130%,>5 m·s-1的误差可控制在15%以内;对受湖陆风影响区域的模拟误差明显偏大,误差大小与湖陆风效应的季节变化有关; (4)两种方案均能抓住70 m左右高度上不同等级风速段的气候背景,对达坂城风区5~15 m·s-1风速段的Ts预报评分可达0.6~0.7,对阿拉山口和小草湖风区≤5 m·s-1风速段的Ts预报评分分别可达0.6~0.7和0.9左右。然而,对达坂城风区≤5 m·s-1风速段的Ts预报评分仅0.3~0.4;(5)两种方案对所有风区需采取停机保护措施的、15 m·s-1以上强风预报的Ts评分仅在0.4~0.6;(6)同一测风塔不同高度上,FDDA方案对风的预报效果不一定总优于CTL方案,但在70 m高度上,FDDA总体略优于CTL;即使同一风区,各个测风塔之间两种方案的预报效果也是因局地多尺度环流影响的不同或因预报的高度不同或预报季节的不同而异,这种预报误差差异的机理还有待探究。

本文引用格式

辛渝 , 于晓晶 , 陈洪武 . 两种背景场改进方案对新疆“狭管”风区风场预报性能评估[J]. 中国沙漠, 2015 , 35(4) : 994 -1005 . DOI: 10.7522/j.issn.1000-694X.2014.00180

Abstract

To objectively evaluate the abilities of simulating/forecasting wind energy resource by the method of objective analysis in WERAS/CMA system (hereafter referred to as CTL scheme) and objective analysis replaced by four-dimensional data assimilation (FDDA) at complex land surface patter and rough terrain, such as Alashankou and Dabancheng-Xiaocaohu wind area which is influenced by both the effect of narrow pipe and lake-land breeze, the two schemes are analyzed and contrasted each other based on 12UTC NCEP reanalysis data and WMO conventional observation data issued by CMACAST during 2009 (July and October) and 2010 (January and April). The results indicate that: (1) For complex region, both of them are all reliable in detailed assessing and forecasting wind energy resources showing that the average relative error at least reduced by 10% compared to the precious method which utilized meso-scale model only. (2) But on the whole, they don't only have a very similar defect in describing the profile characteristic of average wind speed/wind direction frequency at the areas under the control of multiple micro-scale circulation, but also show greater error at 70 m than that at 30, 50 m and 100 m. (3) At about 70 m level, the predictive mean relative error for the ≤5 m·s-1 is up to 60%-130%, for the >5 m·s-1 is less than 15%. And the error is greater apparently at the areas of lake-land breeze effect and it is concerned with the changing of season. (4) At about 70 m, all of them can simulate climate background of different wind speed threshold value well, exhibiting that the threat scores for the 5-15 m·s-1 intervals is up to 0.6-0.7 at Dabancheng wind area, and for the ≤5 m·s-1is 0.6-0.7 at Alashankou and 0.9 or so at Xiaocaohu wind area. However, the threat scores for the ≤5 m·s-1 interval is only 0.3-0.4 at Dabancheng wind area. (5) For all wind regions, the threat scores of the two schemes at about 70m are only 0.4-0.6 in predicting strong wind of above 15 m·s-1 when the wind turbine generator need to stop or take some safeguard procedures. (6) Under the control of various local multi-scale circulations, for different heights of the same mask, the FDDA scheme does not seem to always provide better forecasting effect than the CTL scheme except at about 70 m height at which FDDA scheme is slightly better the CTL, even at the same wind area or different seasons, the forecasting effects are different from each other among various masks. So the physical mechanism why exists this kind of strange feature should be further illustrate in the future.

参考文献

[1] 李泽椿,朱蓉,何晓凤,等.风能资源评估技术方法研究[J].气象学报,2007,65(5):708-717.
[2] 刘丽珺,吕萍,梁友嘉.基于CFD技术的河谷型城市风环境模拟——以兰州市城关区为例[J].中国沙漠,2013,33(6):1840-1847.
[3] 王艺淋,李振山,曾秋兰.高速铁路沿线短时大风预测方法[J].中国沙漠,2014,34(3):861-868
[4] 辛渝,汤剑平,赵逸舟,等.模式不同分辨率对新疆达坂城-小草湖风区地面风场模拟结果的分析[J].高原气象,2010,29(4):884-893.
[5] 辛渝,陈洪武,赵逸舟,等.MM5模式在新疆风能资源详查中的应用试验——以5月为例[J].沙漠与绿洲气象,2011,5(2):12-18.
[6] 辛渝,陈洪武,江远安,等.基于MM5模拟试验的新疆风能资源统计订正初探[J].干旱区地理,2012,35(1):32-45.
[7] 辛渝,陈洪武,李元鹏,等.新疆气象站年均风速均一化订正与基本风压估算初探[J].气候与环境研究,2012,17(2):184-196.
[8] 辛渝,汤剑平,陈鹏翔,等.新疆风区有自记风记录参照站风速的均一化订正[J].沙漠与绿洲气象,2012,6(2):1-7.
[9] 周荣卫,何晓凤,朱蓉.MM5/CALMET模式系统在风能资源评估中的应用[J].自然资源学报,2010,25(12):2101-2113.
[10] 周荣卫,何晓凤,朱蓉,等.中国近海风能资源开发潜力数值模拟[J].资源科学,2010,32(8):1434-1443.
[11] 董旭光,刘焕彬,曹洁,等.山东省近海区域风能资源动力降尺度研究及储量估计[J].资源科学,2011,33(1):178-183.
[12] 姜创业,孙娴,徐军昶.MM5/CALMET数据模拟在陕北风能资源评估中的应用[J].中国沙漠,2011,31(6):1606-1610.
[13] 杜吴鹏,房小怡,轩春怡,等.MM5与CALMET对北京地区风能资源的初步模拟[J].长江流域资源与环境,2012,21(1):84-93.
[14] 潘守文.现代气候学原理[M].北京:气象出版社,1994:530-536.
[15] 辛渝,王澄海,沈元芳,等.WRF模式对新疆中部地面总辐射预报性能的检验[J].高原气象,2013,32(5):1368-1381.
[16] 辛渝,陈洪武.XJRUC/CALMET及CALMET不同参数调整对达坂城-小草湖区风场预报影响[J].高原气象, 2014,33(6):1674-1686.
[17] 孙川永,陶树旺,罗勇,等.海陆风及沿海风速廓线在风电场风速预报中的应用[J].地理物理学报,2009,52(3):630-636.
[18] 杨罡,刘树华,朱蓉,等.鄱阳湖地区大气边界层特征的数值模拟[J].地球物理学报,2011,54(4):896-908.
[19] Cheng F Y,Kim S T,Byund D.A Numerical Study to Understand Impact of Meteorological Fields on Houston's High O\-3 Problem Using CMAQ/MM5[R].San Antonio,USA:AMS Conference,2007.
[20] 江滢,李忠,侯佑华,等.风电场风速和风电功率预报准确率评判方法[J].科技导报,2012,30(36):66-71.
[21] 王婷,李翠华,胡娅敏,等.广东省风能资源分布的数值模拟[J].热带地理,2013,33(1):1-8.
[22] Frey K E,Smith L C.How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia[J].Global Biogeochem[J].Cycles,2007,21:B1016.
[23] Sedano F,Gong P,Ferrao M.Land cover assessment with MODIS imagery in southern African Miombo ecosystems[J].Remote Sensing of Environment,2005,98(4):429-441.
[24] 宫鹏.基于全球通量观测站的全球土地覆盖图精度检验[J].自然科学进展,2009,19(7):754-759.
[25] Herold M,Mayaux P,Woodcock C E,et al.Some challenges in global land cover mapping:an assessment of agreement and accuracy in existing 1 km datasets[J].Remote Sensing of Environment,2008,112(5):2538-2556.
[26] 赵天保,艾丽坤,冯锦明.NCEP再分析资料和中国站点观测资料的分析和比较[J].气候与环境研究,2004,9(2):278-293.
[27] Shi X H,Xu X D,Xie L A.Reliability analyses of anomalies of NCEP/NCAR reanalyzed wind speed and surface air temperature in climate change research in China[J].Acta Meteorologica Sinica,2007,21(3):320-333.
文章导航

/