img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

科尔沁沙质草地纤维素分解菌的筛选、鉴定及其分解能力

  • 王少昆 ,
  • 赵学勇 ,
  • 黄文达 ,
  • 李玉强 ,
  • 岳祥飞 ,
  • 张腊梅
展开
  • 1. 中国科学院寒区旱区环境与工程研究所奈曼沙漠化研究站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
王少昆(1982-),男,陕西绥德人,助理研究员,主要从事干旱半干旱区土壤微生物生态学研究。Email:wangsk@lzb.ac.cn

收稿日期: 2014-02-19

  修回日期: 2014-04-04

  网络出版日期: 2015-11-20

基金资助

国家科技支撑计划项目(2011BAC07B02-02);国家自然科学基金项目(41171414,31170413);中国科学院寒区旱区环境与工程研究所青-人才基金项目(Y251951001)

Isolation and Identification of Cellulose Decomposing Fungi and Their Decomposition Ability in the Horqin Sandy Grassland

  • Wang Shaokun ,
  • Zhao Xueyong ,
  • Huang Wenda ,
  • Li Yuqiang ,
  • Yue Xiangfei ,
  • Zhang Lamei
Expand
  • 1. Naiman Desertification Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-02-19

  Revised date: 2014-04-04

  Online published: 2015-11-20

摘要

从科尔沁沙质草地土壤中,通过分离、纯化、初筛和复筛得到2株分解纤维素(CMC)能力较强的真菌(NM1-1和NM1-2),采用形态学和rDNA-ITS分子生物学相结合的方法鉴定分别为伪弯头曲霉(Asperigillus pseudodeflectus)和尖孢镰刀菌(Fusarium oxysporum)。NM1-1和NM1-2对布条的分解效果较好,30 d的分解率分别达到15.69%和16.91%;凋落物分解试验表明,加NM1-1和NM1-2的草地凋落物分解率在30 d内分别达53.61%和45.72%,分别比对照高7.70和6.42倍。NM1-1和NM1-2的CMC酶活性显著高于其生存的土壤环境。科尔沁沙质草地土壤高效纤维素分解菌的分离和筛选不仅补充了沙质草地土壤功能微生物库,同时对沙地凋落物分解和土壤有效养分输入起到促进作用。

本文引用格式

王少昆 , 赵学勇 , 黄文达 , 李玉强 , 岳祥飞 , 张腊梅 . 科尔沁沙质草地纤维素分解菌的筛选、鉴定及其分解能力[J]. 中国沙漠, 2015 , 35(6) : 1584 -1591 . DOI: 10.7522/j.issn.1000-694X.2014.00047

Abstract

Two effective cellulose decomposing fungi(NM1-1 and NM1-2) were isolated and screened in the Horqin Sandy Grassland. They were identified as Asperigillus pseudodeflectus and Fusarium oxysporum by morphological and rDNA-ITS molecular biological methods. Cloth decomposition rate affected by NM1-1 and NM1-2 were 15.69% and 16.91% in 30 days, respectively; and litter decomposing rate affected by NM1-1 and NM1-2 were 53.61% and 45.72% in 30 days, and the rates were 7.70 and 6.42 times higher than that without any microorganism, respectively. The CMC enzyme activity was significantly higher produced by NM1-1 and NM1-2 than the soil environment where they were isolated. Isolation and screening of effective cellulose decomposing fungi supplemented the soil functional microbe bank, accelerate litter decomposing rate and stimulate available nutrient input in the Horqin Sandy Grassland.

参考文献

[1] Christian P,Robert M,Franz G,et al.The trichoderma cellulose regulatory puzzle:from the interior life of a secretory fungus[J].Enzyme and Microbial Technology,1993,15(2):90-99.
[2] Lynd L R,Weimer P J,Van Zyl W H,et al.Microbial cellulose utilization:fundamentals and biotechnology[J].Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
[3] 潘俊波,李金,徐凤花.高效纤维素降解菌的筛选[J].东北农业大学学报,2006,37(2):175-179.
[4] Schwarz W.The cellulosome and cellulose degradation by anaerobic bacteria[J].Applied Microbiology and Biotechnology,2001,56(5):634-649.
[5] Chapin Iii F S,Matson P A.Principles of Terrestrial Ecosystem Ecology[M].Berlin,Germany:Springer,2011.
[6] 李宪臻,黄云战,徐德贵,等.天然纤维素的微生物降解机理研究进展[J].食品与发酵工业,1996,2:74-78.
[7] 高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):21-29.
[8] Bisaria V S,Ghose T K.Biodegradation of cellulosic materials:substrates,microorganisms,enzymes and products[J].Enzyme and Microbial Technology,1981,3(2):90-104.
[9] Panagiotou G,Kekos D,Macris B J,et al.Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation[J].Industrial Crops and Products,2003,18(1):37-45.
[10] Wen Z,Liao W,Chen S.Production of cellulase by Trichoderma reesei from dairy manure[J].Bioresource Technology,2005,96(4):491-499.
[11] 芦光新,刘雯,卞静,等.一株来自东祁连山高寒草地土壤纤维素分解真菌培养特性的研究[J].草原与草坪,2011,31(3):50-55.
[12] 刘淑霞,王鸿斌,赵兰坡,等.几种纤维素分解菌在有机质转化中的作用[J].农业环境科学学报,2008,27(3):991-996.
[13] 耿丽平,陆秀君,赵全利,等.秸秆还田土壤中高效纤维素分解菌的筛选及其特性[J].江苏农业科学,2012,40(5):302-305.
[14] 甄静,王继雯,谢宝恩,等.一株纤维素降解真菌的筛选、鉴定及酶学性质分析[J].微生物学通报,2011,38(5):709-714.
[15] 高剑锋,李文鑫,李汇龙,等.一株产纤维素酶菌株的筛选及酶学性质[J].湖北农业科学,2012,51(8):1566-1568.
[16] 黄翠,杨朝晖,肖勇,等.堆肥嗜热纤维素分解菌的筛选鉴定及其强化堆肥研究[J].环境科学学报,2010,30(12):2457-2463.
[17] 牛俊玲,李国学,崔宗均,等.堆肥中高效降解纤维素林丹复合菌系的构建及功能[J].环境科学,2005,26(4):186-190.
[18] 芦光新,陈秀蓉,杨成德,等.一株纤维素分解菌的鉴定及对两种草坪草凋落物分解活性的研究[J].草业学报,2011,20(6):170-179.
[19] 唐蕊.土壤中纤维素分解菌的分离与鉴定研究[J].北方园艺,2011,13:41-42.
[20] 樊程,李双江,李成磊,等.大熊猫肠道纤维素分解菌的分离鉴定及产酶性质[J].微生物学报.2012,52(9):1113-1121.
[21] 芦光新,陈秀蓉,杨成德,等.纤维素分解功能菌及其在草业系统界面中的利用潜势[J].草业科学,2011,28(6):1156.
[22] 曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
[23] 王少昆,赵学勇,张铜会,等.造林对沙地土壤微生物的数量、生物量碳及酶活性的影响[J].中国沙漠,2013,33(2):529-535.
[24] 赵哈林,赵学勇,张铜会,等.科尔沁沙地沙漠化过程及其恢复机理[M].北京:海洋出版社,2003.
[25] 左小安,赵学勇,赵哈林,等.科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系[J].环境科学,2007,28(5):945-951.
[26] 王少昆,赵学勇,赵哈林,等.不同强度放牧后沙质草场土壤微生物的分布特征[J].干旱区资源与环境,2008,22(12):164-167.
[27] 李玉强,赵哈林,赵学勇,等.不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量[J].草业学报,2006(5):25-31.
[28] 魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
[29] Barnett H L,Hunter B B.Illustrated genera of Imperfect Fungi[M].St.Paul,USA:APS Press,1998.
[30] 张颖慧,魏东盛,邢来君,等.一种改进的丝状真菌DNA提取方法[J].微生物学通报,2008,35(3):466-469.
[31] 姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
[32] 房兴堂,陈宏,赵雪锋,等.秸秆纤维素分解菌的酶活力测定[J].生物技术通讯,2007(4):628-630.
[33] 刘雯,卞静,付美涛,等.东祁连山高寒草地纤维素分解菌的分离和筛选[J].草原与草坪,2012(2):78-81.
[34] 关孙荫.土壤酶及其研究方法[M].北京:中国农业出版社,1986.
[35] Abdel-Hafez S.Cellulose-decomposing fungi of desert soils in Saudi Arabia[J].Mycopathologia,1982,78(2):73-78.
[36] Abdel-Hafez S,Abdel-Kader M,Abdel-Hafez A.Composition of the fungal flora of Syrian soils[J].Mycopathologia,1983,81(3):161-166.
[37] 周亚飞,詹发强,侯新强,等.棉秸秆降解高温菌株的筛选及产酶分析[J].微生物学通报,2011,38(2):206-213.
[38] 曲浩,赵学勇,赵哈林,等.科尔沁沙地3种灌木凋落物分解速率及其与关键气象因子的关系[J].中国沙漠,2010,30(4):844-849.
文章导航

/