马铃薯是重要的块茎类作物,根癌农杆菌(Agrobacterium tumefaciens)介导的遗传转化方法是马铃薯基因工程育种的重要技术,研究其遗传转化体系和转化效率有助于提高分子育种效率。针对利用根癌农杆菌介导的2种外植体遗传转化马铃薯普通栽培品种,通过筛选获得最佳转化体系和转化率。以4种马铃薯普通栽培品种(Favorita、Shepody、Atlantic、甘农薯2号)的茎段和试管薯薄片为受体材料,对根癌农杆菌介导的不同遗传转化体系的分化率和转化率进行分析。结果表明:Favorita、甘农薯2号和Atlantic茎段经S2(MS;6-BA 2.5 mg·L-1,2,4-D 0.6 mg·L-1,Carb 400 mg·L-1,Kan 50 mg·L-1)和M2(MS;6-BA 2.5 mg·L-1,IAA 0.25 mg·L-1,2,4-D 0.25 mg·L-1,Carb 400 mg·L-1,Kan 50 mg·L-1)培养后获得的转化率显著高于其他培养基。Favorita茎段最大转化率显著高于试管薯薄片转化率;甘农薯2号和Shepody试管薯薄片转化率显著高于茎段转化率。茎段转化体系的最佳诱导愈伤培养基为S2,最佳分化培养为基为M2。Favorita适合采用茎段转化体系,甘农薯2号和Shepody适合采用试管薯薄片转化体系。不同品种的愈伤组织诱导培养基和分化培养基的差别主要是由基因型差异引起的,在提高遗传转化效率中应该针对品种进行转化体系的筛选。
Potato is an important tuber crop. Agrobacterium tumefaciens-mediated potato genetic transformation is an important gene engineering method to improve molecular breeding efficiency in potato. It is very important to get the best transformation system and transformation efficiency. Stem segments and microtuber discs from potato varieties of Gannongshu No.2, Favorita, Shepody and Atlantic were used as acceptor materials. The transformation system of Agrobacterium tumefaciens-mediated were analysis depend on differentiation rate and transformation efficiency. The transformation rate in S2 (MS; 6-BA 2.5 mg·L-1, 2,4-D 0.6 mg·L-1, Carb 400 mg·L-1, Kan 50 mg·L-1), M2 (MS; 6-BA 2.5 mg·L-1, IAA 0.25 mg·L-1, 2,4-D 0.25 mg·L-1, Carb 400 mg·L-1, Kan 50 mg·L-1) medium of stem segments from Gannongshu No.2, Favorita andf Atlantic were significantly higher than other mediums. The stem segment of Favorita had higher transformation rate than microtuber discs of Favorita. The microtuber discs of Gannongshu No.2 and Shepody had higher transformation rate than stem segment of Gannongshu No.2 and Shepody, respectively. The results showed that the best callus-inducing rate potato stem segment was observed on medium S2. The optimum differentiation medium components of potato stem segment was M2. Favorita was suitable for stem segment transformation system, and Gannongshu No.2 and Shepody were suitable for microtuber discs transformation system. The different reasons between callus induction medium and differentiation medium were genotype difference in different varieties. Screening genetic transformation system should be carried out according to different varieties.
[1] Rooke L,Lindsey K.Potato transformation[J].Methods in Molecular Biology,1998,81(4):353-358.
[2] Higgins E S,Hulme J S,Shields R.Early events in transformation of potato by Agrobacterium tumefaciens[J].Plant Science,1992,82(1):109-118.
[3] 朱英,刘永翔,黄永会,等.根癌农杆菌介导转化马铃薯研究[J].种子,2013,32(8):42-44.
[4] Ooms G,Karp A,Roberts J.From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv.Maris Bard')[J].Theoretical and Applied Genetics,1983,66(2):169-172.
[5] Spychalla J P,Bevan M W.Agrobacterium-mediated transformation of potato stem and tuber tissue,regeneration and PCR screening for transformation[M].Netherlands:Springer,1993.
[6] Banerjee A K,Prat S,Hannapel D J.Efficient production of transgenic potato (S.tuberosum L.ssp.andigena) plants via Agrobacterium tumefaciens-mediated transformation[J].Plant Science,2006,170(4):732-738.
[7] Millam S.Potato (Solanum tuberosum L.)[M]//Kan Wang.Agrobacterium Protocols (Volume 2).Netherlands:Humana Press,2007:25-35.
[8] Dale P J,Hampson K K.An assessment of morphogenic and transformation efficiency in a range of varieties of potato (Solanum tuberosum L.)[J].Euphytica,1995,85(1/3):101-108.
[9] Sharma K K,Bhatnagar-Mathur P,Thorpe T A.Genetic transformation technology:status and problems[J].In Vitro Cellular & Developmental Biology-Plant,2005,41(2):102-112.
[10] Trujillo C,Rodriguez-Arango E,Jaramillo S,et al.One-Step transformation of two Andean potato varieties (Solanum tuberosum L.subsp.andigena)[J].Plant Cell Reports,2001,20(7):637-641.
[11] Imai T,Aida R,Ishige T.High frequency of tetraploidy in Agrobacterium-mediated transformants regenerated from tuber discs of diploid potato lines[J].Plant Cell Reports,1993,12(6):299-302.
[12] Gustafson V,Mallubhotla S,Macdonnell J,et al.Transformation and plant regeneration from leaf explants of Solanum tuberosum L.cv.shepody'[J].Plant Cell Tissue & Organ Culture,2006,85(3):361-366.
[13] Yee S,Stevens B,Coleman S,et al.High-efficiency regnerationin vitro from potato petioles with intact leaflets[J].American Journal of Potato Research,2001,78(2):151-157.
[14] 贾笑英.利用转基因技术培育马铃薯 (Solanum tuberosum L.) 高淀粉及抗病新品系[D].兰州:甘肃农业大学,2006.
[15] Heeres P,Schippers-Rozenboom M,Jacobsen E,et al.Transformation of a large number of potato varieties:genotype-dependent variation in efficiency and somaclonal variability[J].Euphytica,2002,124(1):13-22.
[16] Chakravarty B,Wang-Pruski G,Flinn B,et al.Genetic transformation in potato:approaches and strategies[J].American Journal of Potato Research,2007,84(4):301-311.
[17] 赵勤.农杆菌介导的马铃薯遗传转化影响因素研究进展[J].园艺与种苗,2011(2):92-94.
[18] 周鹤峰,邵敏,葛正龙.根癌农杆菌介导的马铃薯茎段遗传转化条件的研究[J].河南农业大学学报,2008,42(3):345-349.
[19] 方贯娜,庞淑敏.马铃薯愈伤组织再生体系的研究进展[J].中国马铃薯,2012,26(5):307-310.
[20] 柳蓉.马铃薯的再生及其再生植株遗传稳定性研究[D].长沙:湖南农业大学,2007.
[21] 司怀军,谢从华,柳俊.农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义 class Ⅰ patatin 基因的导入(英文)[J].作物学报,2003,29(6):801-805.
[22] 熊伟,马耀华,胡碧波,等.根癌农杆菌介导的马铃薯转化系统的优化[J].广西农业生物科学,2007,26(1):1-7.
[23] 张陈明,胡宗利,陈国平.根癌农杆菌介导转化马铃薯与抗病毒基因工程[J].生物技术通报,2008(6):30-35.
[24] Visser R G F.Regeneration and transformation of potato by Agrobacterium tumefaciens[M]//Smith R.Plant Tissue Culture Manual.Netherlands:Springer,1991:301-309.
[25] 齐恩芳,张金文,王一航.反义AcInv基因导入马铃薯遗传转化体系的优化[J].中国蔬菜,2007(8):10-14.