选择科尔沁沙地典型沙丘-草甸相间地为研究区,利用土壤颗粒的体积分形模型计算了研究区49个采样点土壤颗粒的分形维数,并建立了分形维数与土壤颗粒不同粒级间的相关关系,以探讨半干旱寒冷地区土壤颗粒的分形特征与土壤物理性质以及养分含量之间的关系。结果表明:(1)研究区土壤颗粒的分形维数为1.33~2.50,变幅较大,且呈现出自中部的草甸、农田地带向南、北方向的沙丘地带递减的趋势;土壤颗粒的体积分形维数依照流动沙丘-半流动半固定沙丘-固定沙丘-农田-草甸的顺序而递增。(2)土壤颗粒的分形维数与黏粒、粉粒含量显著正相关,与砂粒含量显著负相关,且表现出明显的对数关系。100 μm是影响土壤颗粒分形维数变化的分界粒径,大于该粒径的颗粒含量越高,土壤颗粒的分形维数越小;反之越大。(3)分形维数与土壤养分含量相关显著,土壤颗粒的分形维数与电导率、pH值及有机质、全氮、全磷含量均显著正相关,但与全钾含量负相关。在分形维数大于2时,基本与土壤饱和含水率正相关、与干容重负相关。
The volume fractal dimension model was used to calculate the particle fractal dimension of 49 sampling points in the dune-meadow ecotone in the Horqin Sandy Land and established the relationship between fractal dimension (D) and the different particle level for discuss the correlation between soil fractal dimension and the soil physical properties as well as soil nutrient in semiarid cold area. Resulted showed that: (1) Soil fractal dimension varied from 1.33-2.50 and it had a tendency of decrease from the meadow, farmland in the middle of the study area to the sand dune in the north and south. The fractal dimension has the significantly difference of the different landforms and different landuses. Soil fractal dimension increased in the following order: sand dunes-semi-mobile and semi-fixed dune-fixed dune-farmland-meadow. (2) Fractal dimension was significantly positively logarithmic correlated with clay content and silt content, but significantly negatively logarithmic correlated with sand content. 100 μm diameter can be regarded as a critical diameter .The more the \{>100\} μm content, the lower the fractal dimension; otherwise, the higher fractal dimension. (3) There existed significant correlations between fractal dimension and soil nutrient. The correlation between fractal dimension and electronically conductively, pH, the content of SOM, total nitrogen, total phosphorus was significantly positive, but negative with total potassium. When fractal dimension is larger than 2, the correlation between D and bulk density was negative. But, its positive with saturation moisture content.
[1] 鲁植雄,张维强,潘君拯.分形理论及其在农业土壤中的应用[J].土壤学进展,1944,22(5):40-45.
[2] Armstrong A C.On the fractal dimension of some transient soil properties[J].Journal of Soil Science,1986,37:641-652.
[3] Bartoli F R,Philippy M,Doirsse S N.Structure and self-similarity in silt and sandy soils:the fractal approach[J].Journal of Soil Science,1991,42:167-185.
[4] 李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10.
[5] 杨金玲,李德成,张甘霖,等.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报,2008,45(3):413-419.
[6] Li Y,Li M,Si B C,et al.Relationship between volume-based and number-based fractal dimensions of soil particle size distributions[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):82-91.
[7] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
[8] Martin M A,Montero E.Laser diffraction and Muti fractal analysis for the characterization of dry soil volume-size distributions[J].Soil Science Society of America Journal,1993,57:891-895
[9] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.
[10] Kozak E,Sokolowska Z,Stepniewski W,et al.A modified number-based method for estimating fragmentation fractal dimensions of soils[J].Soil Science Society of America Journal,1996,60:1291-1297.
[11] 贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,26(3):519-525.
[12] 苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74.
[13] 黄冠华,詹卫华.土壤水分特征曲线的分形模拟[J].水科学进展,2002,13(1):55-60.
[14] 刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线分形模型的应用[J].土壤学报,2003,40(1):46-52.
[15] Tyler S W,Wheatcraft S W.Fractal scaling of soil particle size distributions:analysis and limitation[J].Soil Science Society of America Journal,1992,56:362-369.
[16] 邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
[17] 李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263-265.
[18] 赵哈林,周瑞莲,苏永忠,等.我国北方干旱地区土壤的沙漠化演变过程与机制[J].水土保持学报,2007,21(3):1-5.
[19] 杜海燕,周智彬,刘凤山,等.绿洲化过程中阿拉尔垦区土壤粒径分形变化特征[J].干旱区研究,2013,30(4):615-622.
[20] Rieu M,Sposito G.Fractal fragmentation,soil porosity,and soil-water properties[J].Soil Science Society of America Journal,1991,55(5):1239-1244.
[21] 陈小红,段争虎,谭明亮,等.沙漠化逆转过程中土壤颗粒分形维数点的变化特征-以宁夏盐池县为例[J].干旱区研究,2010,27(2):297-302.
[22] 张世熔,邓良基,周倩等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226.
[23] 任雪,褚贵新,王国栋,等.准噶尔盆地南缘绿洲-沙漠过渡带"肥岛"形成过程中土壤颗粒的分形研究[J].中国沙漠,2009,29(2):298-304.
[24] 贾晓红,李新荣,张景光,等.沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J].生态学报,2006,26(9):2827-2833.
[25] 王力,王全九,石滨嘉夫,等.安达市碱性草地土壤颗粒的分维特征[J].中国水土保持科学,2008,6(6):63-67.
[26] 田佳倩,周志勇,包彬,等.农牧交错区草地利用方式导致的土壤颗粒组成成分变化及其对土壤碳氮含量的影响[J].植物生态学报,2008,32(3):601-610.
[27] 柳妍妍,胡玉昆,公延明.高寒草原不同退化阶段土壤颗粒的分形特征[J].水土保持通报,2013,33(5):138-142.