img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

乌鲁木齐降水中δ18O的温度和降水强度效应的季节转换

  • 郑新军 ,
  • 李彦 ,
  • 徐利岗
展开
  • 1. 中国科学院新疆生态与地理研究所 绿洲与荒漠生态国家重点实验室/新疆阜康荒漠生态国家野外科学观测研究站, 新疆 乌鲁木齐 830011;<2r>2. 中国科学院大学, 北京 100049;<2r>3. 宁夏水利科学研究所, 宁夏 银川 750021
郑新军(1979-),男,博士研究生,助理研究员,主要从事荒漠气象、生态与稳定同位水文学研究.E-mail:zhengxj@ms.xjb.ac.cn

收稿日期: 2014-11-10

  修回日期: 2015-01-14

  网络出版日期: 2016-03-20

基金资助

国家自然科学基金项目(41171049,41371079);中国博士后科学基金项目(2013M542416)

Seasonal Transition between Temperature and Precipitation Intensity Effect on Precipitation δ18O in Urumqi, China

  • Zheng Xinjun ,
  • Li Yan ,
  • Xu Ligang
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology/Fukang National Field Station for Desert Ecological Observation and Research, Xinjiang institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute of the Water Conservancy of Ningxia, Yinchuan 750021, China

Received date: 2014-11-10

  Revised date: 2015-01-14

  Online published: 2016-03-20

摘要

受到温度和降水季节变化的双重影响,温带大陆和季风气候地区降水中的δ18O有很强的季节动态。在中国北方由于受到强烈的温度季节变化的控制,降水中δ18O有很强的温度效应,甚至在月尺度上与温度呈显著的正相关。然而,在降水事件尺度上,特别是多雨的夏季,显著的降水量效应仍然存在。本研究结合气象数据分析了来源于GNIP的乌鲁木齐月尺度上的降水中δ18O与平均气温和降水量之间的关系。结果表明:在年尺度上,保持气温和降水频率不变,扣除两者的影响,δ18O与降水强度有显著的负相关关系(P=0.012)。温度和降水强度效应分别为(0.45±0.03)‰·℃-1(T=17.38,P<0.001)和(-0.28±0.12)‰·mm-1(T=-2.29,P=0.023)。温度和降水效应在一年四季均存在,且两者存在季节转化,分别主导了一年中不同季节降水中δ18O的动态变化。在气温剧烈变动的春季(3-5月)和秋季(9-11月),显著的温度效应占主导。而在夏季(6-8月),显著的降水强度效应(T=-2.93,P=0.006)主导了降水中δ18O的动态。尽管在冬季(12月至翌年2月)降水强度效应和温度效应很微弱也不显著,但是前者仍然大于后者。

本文引用格式

郑新军 , 李彦 , 徐利岗 . 乌鲁木齐降水中δ18O的温度和降水强度效应的季节转换[J]. 中国沙漠, 2016 , 36(2) : 491 -498 . DOI: 10.7522/j.issn.1000-694X.2015.00028

Abstract

Because of the temperature and precipitation impact, there is an intensive seasonal varying of precipitation δ18O under the temperate continental and monsoon climate in the most of China. In northern part of China, predominant by the fluctuant air temperature, precipitation δ18O has a strong temperature effect, and even on the monthly scale there is a significant positive correlation with precipitation amount. However, recently, several studies showed that there was also a significant or insignificant precipitation amount effect on the precipitation event scale especially for the rainy summer season. In this study, precipitation δ18O downloaded from GNIP with monthly meteorological data was reanalyzed. The result showed that when the variation of air temperature and precipitation frequency were sorted out to remove their influence, there was a significant negative correlation between precipitation intensity on the monthly scale all year round (P=0.012). The significant temperature and precipitation intensive effect yearly were (0.45±0.03)‰\5℃-1 (T=17.38, P<0.001) and (-0.28±0.12)‰·mm-1 (T=-2.29, P=0.023), respectively. In the four seasons, temperature and precipitation intensive effect all coexisted, and they shifted and dominated the fluctuation of precipitation δ18O in different seasons, respectively. In spring and autumn, it was predominated by the significant temperature effect because of the strong fluctuation in air temperature. In hot summer, it was predominated by the significant precipitation intensity effect of (-0.49±0.17)‰·mm-1 (T=-2.93, P=0.006). Although in cold winter, the temperature and precipitation intensity effect were both insignificant, the latter also was larger than the former.

参考文献

[1] Dansgaard H.Stable isotope in precipitation [J].Tellus,1964,14:436-468.
[2] Rozanski K,Araguas-Araguas L,Gonfiantini R.Isotopic patterns in modern global precipitation[M]//Swart P K,Lohmann K C,McKenie J,et al.Climate Change in Continental Isotopic Records.Washiington,USA: AGU,1993:1-36.
[3] McGuire K,McDonnell J.Stable isotopes tracers in watershed hydrology[M]//Michener R,Laitha K.Stable Isotopes in Ecology and Environmental Science.Oxford,UK:Blackwell Publishing Ltd.,2007:334-373.
[4] Zhang X P,Liu J M,Tian L D,et al.Variation of δ18O in precipitation along vapor transport paths[J].Advance in Atmospheric Sciences,2004,21:562-572.
[5] Zhang X P,Jin H J,Sun W Z.Stable isotopic variation in precipitation in southwest China[J].Advance in Atmospheric Sciences,2006,23:649-658.
[6] 林光辉.稳定同位素生态学[M].北京:高等教育出版社,2013:53-86.
[7] Beysens D.The formation of dew[J].Atmospheric Research,1995,39:215-237.
[8] Beysens D.Dew nucleation and growth[J].Comptes Rendus Physique,2006,7:1082-1100.
[9] Gat J R.The isotopes of hydrogen and Oxygen in precipitation[M]//Fritz P,Fontes J C.Handbook of Environmental Isotope Geochemistry.Amsterdam,Netherlands:Elsevier,1980:21-47.
[10] Gedzelman S D,Amold R.Modeling the isotopic composition of precipitation[J].Journal of Geophysical Research,1994,99:10455-10471.
[11] Feng X,Faiia A M,Posmentier E S.Seasonality of isotopes in precipitation:a global perspective[J].Journal of Geophysical Research,2009,114:D08116.
[12] Sholl M A,Shanley J B,Zegarra J P,et al.The stable isotope amount effect:new insights from of NEXRAD echo tops,Luquillo Mountains,Puerto Rico[J].Water Resources Research,2009,45:W12407.
[13] Zhao L J,Xiao H L,Zhou M X.Factor controlling spatial and seasonal distributions of precipitation δ18O in China[J].Hydrological Processes,2012,26:143-152.
[14] 章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53:356-364.
[15] 李小飞,张明军,李亚举,等.西北干旱区降水中δ18O变化特征及其水汽输送[J].环境科学,2012,33:711-719.
[16] 柳鉴容,宋献方,袁国富,等.西北地区大气降水δ18O的特征及水汽来源[J].地理学报,2008,63:12-22.
[17] Liu J R,Song X F,Sun X M,et al.Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin[J].Journal of Geographical Sciences,2009,19:164-174.
[18] 吴锦奎,杨淇越,丁永建,等.黑河流域大气降水稳定同位素变化及模拟[J].环境科学,2011,32:1857-1866.
[19] Wu J K,Ding Y J,Ye B S,et al.Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin,Northwestern China[J].Environmental Earth Sciences,2010,61:1123-1134.
[20] Chen F L,Zhang M J,Ma Q,et al.Stable isotopic characteristics of precipitation in Lanzhou City and its surrounding areas,Northwest China[J].Environmental Earth Sciences,2014,73:4671-4680.
[21] 陈粉丽,张明军,马潜,等.兰州及周边区域大气降水δ18O特征及其水汽来源[J].环境科学,2013,34:3755-3763.
[22] Wu J K,Ding Y J,Ye B S,et al.Stable Isotopes in precipitation in Xilin River Basin,Northern China and their implications[J].Chinese Geographical Science,2012,22:531-540.
[23] Fischer M J,Baldini L M.A climate-isotope regression model with seasonally-varying and times-integrated relationship[J].Climate Dynamics,2011,37:2235-2251.
[24] Kumar B,Rai S P,Kumar U S,et al.Isotopic characteristics of Indian precipitation[J].Water Resources Research,2010,46:W12548.
[25] 章新平,姚檀栋.青藏高原降水中δ18O与温度和降水量的关系[J].地理科学,1995,15:1-7.
[26] Liu J R,Song X F,Yuan G F.Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J].Chinese Science Bulletin,2010,55:200-211.
[27] 章新平.初探北大西洋海温对北疆地区春季水量丰枯的影响[J].地理科学,1989,9:329-335.
[28] Zhou H F,Zheng X J,Zhou B J,et al.Sublimation over seasonal snowpack at the southeastern edge of central Eurasia[J].Hydrological Processes,2011,26:3911-3920.
[29] 冯芳,李忠勤,金爽,等.天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析[J].水科学进展,2013,24:634-641.
[30] 申建波,毛达如.植物营养研究法[M].北京:中国农业大学出版社,2011:209-212.
文章导航

/