img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
水文与水资源

基于机载雷达数据的青海云杉(Picea crassifolia)林降雨截留空间模拟

  • 高婵婵 ,
  • 赵传燕 ,
  • 李文娟 ,
  • 别强 ,
  • 彭守璋 ,
  • 王清涛
展开
  • 1. 兰州大学生命科学学院/草地农业生态系统国家重点实验室, 甘肃 兰州 730000;<2r>2. 兰州大学资源与环境学院, 甘肃 兰州 730000
高婵婵(1990-),女,安徽人,硕士研究生,主要从事生态水文研究。E-mail:gaochch13@lzu.edu.cn

收稿日期: 2014-10-03

  修回日期: 2015-01-22

  网络出版日期: 2016-03-20

基金资助

国家自然科学基金重点项目(91025015)

Modeling Spatial Distribution of Rainfall Interception by Qinghai Spruce Forest Based on Airborne LiDAR Data

  • Gao Chanchan ,
  • Zhao Chuanyan ,
  • Li Wenjuan ,
  • Bie Qiang ,
  • Peng Shouzhang ,
  • Wang Qingtao
Expand
  • 1. State Key Laboratory of Grassland and Agro-Ecosystem/School of Life Sciencet, Lanzhou University, Lanzhou 730000, China;
    2. Colleage of Resources and Enviroment, Lanzhou University, Lanzhou 730000, China

Received date: 2014-10-03

  Revised date: 2015-01-22

  Online published: 2016-03-20

摘要

以祁连山天老池流域青海云杉(Picea crassifolia)林为对象,以2013年降雨截留观测数据和机载雷达数据,结合GIS技术对青海云杉林进行流域尺度上的截留模拟。先以样方尺度上观测的数据建立截留量统计模型,然后利用机载雷达数据计算冠层激光穿透指数(LPI),根据LPI与叶面积指数(LAI)的关系实现对青海云杉LAI的反演,最后利用青海云杉林区降雨量和LAI空间分布数据,在GIS的空间分析中,模拟研究区青海云杉林截留的空间分布。结果表明:2013年生长季研究区青海云杉林林冠截留量0~331.0 mm,平均161.9 mm,林冠截留率在0~67.97%,平均33.89%;整个生长季,流域青海云杉林冠截留量约5.26×105 m3,占整个流域生长季总降雨量的7.38%。

本文引用格式

高婵婵 , 赵传燕 , 李文娟 , 别强 , 彭守璋 , 王清涛 . 基于机载雷达数据的青海云杉(Picea crassifolia)林降雨截留空间模拟[J]. 中国沙漠, 2016 , 36(2) : 515 -521 . DOI: 10.7522/j.issn.1000-694X.2015.00011

Abstract

Rainfall interception from plant canopy is an important component in water cycle, especial in the arid and semi-arid region. In this study, Tianlaochi catchment in the upper reaches of Heihe river was selected as a research site, and the Picea crassifolia as a study object. We focused on the canopy rainfall interception at regional scale based on measuring in situ and combining with airborne LiDAR data and GIS technology. First, precipitation, interception by the forest canopy and leaf area index (LAI) of P. crassifolia forest were measured at stand scale, which were used to build a model for the canopy interception of P. crassifolia. Then, laser penetration index (LPI) was estimated by LiDAR data, and a relationship between LPI estimated and LAI measured was built based on Beer-Lambert law. We used the relationship to spatialize the LAI in the study area. Finally, the spatial distribution of canopy interception of Qinghai spruce forest during the growth season was estimated by the canopy interception model with the spatial distribution data of precipitation and LAI in 2013. The results showed that LAI value was between 0 and 4.93, with the mean value 1.24, compared with optical remote sensing, airborne LiDAR has an advantage in the inversion of LAI, the amount of canopy interception was between 0 and 331.0 mm, with the mean amount 161.9 mm, the interception percentage was between 0 and 67.97%, with the mean value 33.89%, the total interception amount was 5.26×105 m3, accounting for 7.38% of the total precipitation during the growth season in 2013. So we can draw some conclusions from the study that the canopy interception model M3 is the best, and the way to obtain spatial distribution of LAI based on LiDAR data is better than on passive remote sensing. In addition, rainfall interception by Qinghai spruce plays an important role in water balance of the forest ecosystem in the catchment. This study lays the foundation for further predicting runoff in the research area.

参考文献

[1] Hörmann G,Branding A,Clemen T,et al.Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany[J].Agricultural and Forest Meteorology,1996,79(3):131-148.
[2] Llorens P,Domingo F.Rainfall partitioning by vegetation under Mediterranean conditions.a review of studies in Europe[J].Journal of Hydrology,2007,335(1):37-54.
[3] Ramírez J A,Senarath S U S.A statistical-dynamical parameterization of interception and land surface-atmosphere interactions[J].Journal of Climate,2000,13(22):4050-4063
[4] Gash J H C.An anaIytical model of rainfall interception by forests[J].Quarterly Journal of the Royal Meteorological Society,1979,105:43-55.
[5] Rutter A J,Morton A J,Robins P C.A predicitive model of rainfall interception in forests.Ⅱ.generalization of the model and comparison with observations in some coniferous and hardwood stands[J].Journal of Applied Ecology,1975,12:367-380.
[6] Liu S.A new model for the prediction of rainfall interception in forest canopies[J].Ecological Modelling,1997,99(2):151-159.
[7] Gash J H C,Lloyd C R,Lachaud G.Estimating sparse forest rainfall interception with an analytical model[J].Journal of Hydrology,1995,170(1):79-86.
[8] 张学龙,罗龙发,敬文茂,等.祁连山青海云杉林截留对降水的分配效应[J].山地学报,2007,25(6):678-683.
[9] 徐先英,严平,郭树江,等.干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征[J].中国沙漠,2013,33(1):141-145.
[10] 马育军,高尚玉,李小雁,等.高寒河谷灌丛冠层降雨再分配特征及影响因素[J].中国沙漠,2012,32(4):963-971.
[11] 程国栋,赵传燕.干旱区内陆河流域生态水文综合集成研究[J].地球科学进展,2008,23(10):1005-1012.
[12] 王文,诸葛绪霞,周炫.植物截留观测方法综述[J].河海大学学报:自然科学版,2010,5:495-504.
[13] 彭焕华,赵传燕,沈卫华,等.祁连山北坡青海云杉林冠对降雨截留空间模拟——以排露沟流域为例[J].干旱区地理,2010,33(4):600-606.
[14] Gómez J A,Giráldez J V,Fereres E.Rainfall interception by olive trees in relation to leaf area[J].Agricultural Water Management,2001,49(1):65-76.
[15] 王安志,刘建梅,裴铁璠,等.云杉截留降雨实验与模型[J].北京林业大学学报,2005,27(2):38-42.
[16] 常学向,赵爱芬,王金叶,等.祁连山林区大气降水特征与森林对降水的截留作用[J].高原气象,2002,21(3):274-280.
[17] 金博文,王金叶,常宗强,等.祁连山青海云杉林冠层水文功能研究[J].西北林学院学报,2009(增刊):39-42.
[18] 张虎,马力.祁连山青海云杉林降水及其再分配[J].甘肃林业科技,2000,25(4):27-30.
[19] 党宏忠,周泽福,赵雨森.青海云杉林冠截留特征研究[J].水土保持学报,2005,19(4):60-64.
[20] Peduzzi A,Wynne R H,Fox T R,et al.Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data[J].Forest Ecology and Management,2012,270:54-65.
[21] Lefsky M A,Hudak A T,Cohen W B,et al.Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest[J].Remote Sensing of Environment,2005,95(4):532-548.
[22] Solberg B D,Moon C N,Franco D P,et al.Surgical treatment of three and four-part proximal humeral fractures[J].The Journal of Bone & Joint Surgery.2009,91(7):1689-1697.
[23] 赵传燕,沈卫华,彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物生态学报,2009,33(5):860-869.
[24] 别强.基于激光雷达和合成孔径雷达资料的森林参数反演研究[D].兰州:兰州大学,2013.
[25] 别强,何磊,赵传燕.基于影像融合和面向对象技术的植被信息提取研究[J].遥感技术与应用,2014,29(1):164-171.
[26] 王金叶,于澎涛,王彦辉,等,森林生态水文过程研究-以甘肃祁连山水源涵养林为例[M].北京:科学出版社,2008:28.
[27] Calder I R,Newson M D.Land use and upland water resources in Britain-a strategic look[J].Water Resources Bulletin,1979,16:1628-1639.
[28] Merriam R A.A note on the interception loss equation[J].Journal of Geophysical Research,1960,65(11):3850-3851.
[29] 温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289-298.
[30] White M A,Asner G P,Nemani R R,et al.Measuring fractional cover and leaf area index in arid ecosystems:digital camera,radiation transmittance,and laser altimetry methods[J].Remote Sensing of Environment,2000,74:45-57.
[31] Zhao K G,Popescu S.Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA[J].Remote Sensing Environment,2009,113(8):1628-1645.
[32] 骆社周,王成,张贵宾,等.机载激光雷达森林叶面积指数反演研究[J].地球物理学报,2013,56(5):1467-1475.
[33] 田风霞,赵传燕,冯兆东,等.祁连山青海云杉林冠生态水文效应及其影响因素[J].生态学报,2012,32(4):1066-1076.
[34] Gong H D,Wang K Y,Yang W Q,et al.Throughfall and stemflow in a primary spruce forest in the subalpine of western Sichuan[J].Scientia Silvae Sinicae,2005,41(1):198-201.
文章导航

/