img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

沙柳(Salix psammophila)丛生枝生物量最优分配与异速生长

  • 陈国鹏 ,
  • 赵文智 ,
  • 何世雄 ,
  • 付晓
展开
  • 1. 甘肃农业大学 林学院, 甘肃 兰州 730070;<2r>2. 白龙江林业管理局林业科学研究所, 甘肃 兰州 730070;<2r>3. 中国科学院寒区旱区环境与工程研究所 中国生态系统研究网络临泽内陆河流域研究站/中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000;<2r>4. 灵武市大泉林场, 宁夏 灵武 751400;<2r>5. 宁夏仁存渡护岸林场, 宁夏 灵武 751400
陈国鹏(1986-),男,甘肃武威人,博士研究生,主要从事生态系统过程研究。E-mail:chgp1986@gmail.com

收稿日期: 2015-07-30

  修回日期: 2015-09-29

  网络出版日期: 2016-03-20

基金资助

国家基础研究发展计划项目(2013CB429903);甘肃省青-科技基金计划(145RJYK278);陇原青-创新人才扶持计划项目

Biomass Allocation and Allometric Relationship in Aboveground Components of Salix psammophila Branches

  • Chen Guopeng ,
  • Zhao Wenzhi ,
  • He Shixiong ,
  • Fu Xiao
Expand
  • 1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
    2. Institute of Forestry Sciences, Bailongjiang Forestry Management Bureau of Gansu Province, Lanzhou 730070, China;
    3. Linze Inland River Basin Research Station/Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    4. Daquan Forest Farm of Lingwu, Lingwu 751400, Ningxia, China;
    5. Rencundu Bank Protection Forest Farm of Ningxia Region, Lingwu 751400, Ningxia, China

Received date: 2015-07-30

  Revised date: 2015-09-29

  Online published: 2016-03-20

摘要

茎叶生物量分配的权衡关系是植物生活史研究的重要内容。以毛乌素沙地南缘的优势灌木沙柳(Salix psammophila)为对象,用生物量分配份数的方法分析了沙柳丛生枝尺度上茎、小枝、叶生物量分配与个体大小的依赖关系,并用标准主轴回归(SMA)检验茎、小枝、叶生物量的异速生长关系。结果表明:(1)随着沙柳丛生枝的增大,茎、小枝、叶各构件生物量积累明显,基径比枝长能更好地反映生物量随个体大小的变化规律;丛生枝茎、小枝、叶和总生物量随基径变化的幂函数分别为y=0.1861x2.2950y=0.0194x2.9794y=0.0875x2.1421y=0.1863x2.5454。(2)随着沙柳丛生枝个体的增大,总资源中分配到茎和叶的份数下降,分配到枝的份数增加;基径能更好地解释茎和小枝生物量分配份数的变化,枝长能更好地反映叶生物量分配份数的变化。(3)沙柳丛生枝茎、小枝、叶生物量相互间均存在显著的异速生长关系,异速指数αT-SαL-SαL-T分别为1.557、1.087和0.6916,随个体大小的变化,小枝生物量的变化速度最快,叶生物量的变化次之,茎生物量的变化速度最慢。最优分配理论和异速生长分配理论能互为补充,较好地解释沙柳丛生枝构件的生物量权衡关系。

本文引用格式

陈国鹏 , 赵文智 , 何世雄 , 付晓 . 沙柳(Salix psammophila)丛生枝生物量最优分配与异速生长[J]. 中国沙漠, 2016 , 36(2) : 357 -363 . DOI: 10.7522/j.issn.1000-694X.2015.00157

Abstract

Data on tree biomass are essential for evaluating carbon sequestration cycling, plant adaptations to the environment and also for studying impacts of silvicultural practices on forest productivity. We determined biomass accumulation and allometric relationships in the partitioning of above ground biomass between stems, twig, and leaves in Salix psammophila, a sandy shrub, it not only protects environment, but also has economic value. The biomass allocation patterns were studied by fitting allometric functions in biomass partitioning between leaves (ML), stems (MS) and twigs (MT). The results showed that: (1) Biomass accumulation varied with branch basal diameter (BBD) and branch lengths (BL) increased, and BBD has a higher coefficient of determination in the form of power functions, and the allometric biomass equations for stems, twigs, leaves and of all were y=0.1861x2.2950, y=0.0194x2.9794, y=0.0875x2.1421 and y=0.1863x2.5454, respectively. (2) The number of the resources allocated to stem, twigs and leaves were changed with branches growing. There showed the power functions better with BBD than BL which the percentages of resource allocated to stem and leaves, and the percentages of twigs biomass to total biomass was better with BL. (3)There existed an allometric relationship between the MS, MT and ML, with the standardized major axis slopes were 1.557 (αT-S), 1.087 (αL-S) and 0.6916 (αL-T), respectively. The twigs have the highest values which increasing with the branches growing, and the stem has the lowest values of that. Therefore, our results indicated that the optimal partitioning theory and metabolic scaling theory complement each other, and it can explain the biomass changed and the scaling relationship for stem, twigs and leaves in S. psammophila branches.

参考文献

[1] Poorter H,Niklas K J,Reich P B,et al.Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control[J].New Phytologist,2012,193(1):30-50.
[2] Weiner J.Allocation,plasticity and allometry in plants[J].Perspectives in Plant Ecology,Evolution and Systematics,2004,6(4):207-215.
[3] Xiang S,Wu N,Sun S.Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient:allometric scaling analysis[J].Trees,2009,23(3):637-647.
[4] Bloom A J,Chapin F S,Mooney H A.Resource limitation in plants-an economic analogy[J].Annual Review of Ecology and Systematics,1985,16:363-392.
[5] 钟泽兵,周国英,杨路存,等.柴达木盆地几种荒漠灌丛植被的生物量分配格局[J].中国沙漠,2014,34(4):1042-1048.
[6] Gargaglione V,Peri P L,Rubio G.Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J].Forest Ecology and Management,2010,259(6):1118-1126.
[7] Niklas K J,Enquist B J.Canonical rules for plant organ biomass partitioning and annual allocation[J].American Journal Botany,2002,89(5):812-819.
[8] 王晨,江泽慧,郭起荣,等.毛竹地上器官的生物量分配及其随个体大小变化的规律[J].生态学杂志,2014(8):2019-2024.
[9] 朱强根,金爱武,王意锟,等.不同营林模式下毛竹枝叶的生物量分配:异速生长分析[J].植物生态学报,2013(9):811-819.
[10] 李钰,赵成章,侯兆疆,等.高寒退化草地狼毒种群个体大小与茎、叶的异速生长[J].生态学杂志,2013(2):241-246.
[11] 陈静,李玉霖,崔夺,等.氮素及水分添加对科尔沁沙地4种优势植物地上生物量分配的影响[J].中国沙漠,2014,34(3):696-703.
[12] 陈国鹏,赵文智.毛乌素沙地南缘沙柳(Salix psammophila)丛生枝年龄结构与动态特征[J].中国沙漠,2015,35(6):1520-1526.
[13] 米志英,高永,白存德,等.库布齐沙漠沙柳无性快速培育技术对比研究[J].中国沙漠,2008,28(2):318-321.
[14] Li X,Huang Y,Gong J,et al.A study of the development of bio-energy resources and the status of eco-society in China[J].Energy,2010,35(11):4451-4456.
[15] 刘陟.毛乌素沙地主要灌木生物量及其模型的研究[D].呼和浩特:内蒙古大学,2014.
[16] 魏裕峰,任德胜.伊盟沙柳生长状况调查[J].内蒙古林业调查设计,1997(1):22-24.
[17] 侯新春,格日乐其其格.不同配置模式沙柳林内沙柳生物量模型的研究[J].内蒙古林业调查设计,2011(1):87-90.
[18] 于海春,李燕,高润宏.沙柳平茬碳汇功能与生产力分配格局研究[J].林业资源管理,2013(3):54-57.
[19] Kuyah S,Dietz J,Muthuri C,et al.Allometry and partitioning of above-and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes[J].Biomass and Bioenergy,2013,55:276-284.
[20] 韩文轩,方精云.幂指数异速生长机制模型综述[J].植物生态学报,2008(4):951-960.
[21] 赵成义,宋郁东,王玉潮,等.几种荒漠植物地上生物量估算的初步研究[J].应用生态学报,2004(1):49-52.
[22] 李晓娜,国庆喜,王兴昌,等.东北天然次生林下木树种生物量的相对生长[J].林业科学,2010(8):22-32.
[23] 陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002(3):304-309.
[24] 朱灵益,李金昌.样方面积和数量对沙柳生物量精度的影响[J].中国沙漠,1992,12(4):60-63.
[25] 王蕾,王志,刘连友,等.沙柳灌丛植株形态与气流结构野外观测研究[J].应用生态学报,2005(11):3-7.
[26] 郭江超,柴永福,万鹏程,等.陕北毛乌素沙漠灌丛群落生物量研究[C]//生态文明建设中的植物学:现在与未来.中国植物学会第十五届会员代表大会暨八十周年学术年会.南昌,2013.
[27] 王意锟,金爱武,朱强根,等.施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J].植物生态学报,2014(3):289-297.
[28] Jarcuska B,Milla R.Shoot-level biomass allocation is affected by shoot type in Fagus sylvatica[J].Journal of Plant Ecology,2012,5(4):422-428.
[29] 杨冬梅,毛林灿,彭国全.常绿和落叶阔叶木本植物小枝内生物量分配关系研究:异速生长分析[J].植物研究,2011(4):472-477.
[30] Pickup M,Westoby M,Basden A.Dry mass costs of deploying leaf area in relation to leaf size[J].Functional Ecology,2005,19(1):88-97.
[31] Corner E J H.The durian theory or the origin of the modern tree[J].Annals of Botany,1949,13(4):367-414.
[32] 章建红,史青茹,许洺山,等.浙江天童木本植物Corner法则的检验:个体密度的影响[J].植物生态学报,2014(7):655-664.
[33] 张萍萍,李秧秧,邵明安.沙地生境和平茬年限对沙柳叶功能特征的影响[J].应用生态学报,2011(9):2240-2246.
[34] West G B,Brown J H,Enquist B J.A general model for the origin of allometric scaling laws in biology[J].Science,1997,276(5309):122-126.
[35] 马玉珠,程栋梁,钟全林,等.7种木本植物的分支指数与代谢指数[J].植物生态学报,2014(6):599-607.
[36] 程栋梁,钟全林,林茂兹,等.植物代谢速率与个体生物量关系研究进展[J].生态学报,2011,31(8):2312-2320.
文章导航

/