img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

干旱沙区生物土壤结皮覆盖土壤CO2通量对脉冲式降雨的响应

  • 贾晓红 ,
  • 辜晨 ,
  • 吴波 ,
  • 李元寿 ,
  • 成龙 ,
  • 李新荣
展开
  • 1. 中国林业科学研究院 荒漠化研究所, 北京 100091;<2r>2. 中国科学院寒区旱区环境与工程研究所 沙坡头沙漠研究试验站, 甘肃 兰州 730000;<2r>3. 中国气象科学研究院, 北京 100081
贾晓红(1973-),女,甘肃康县人,副研究员,主要从事荒漠生态学方面的研究。E-mail:jiaxiaohong@caf.ac.cn

收稿日期: 2015-11-23

  修回日期: 2016-01-30

  网络出版日期: 2016-03-20

基金资助

中央级公益性科研院所基本科研业务费项目(CAFYBB2016ZD010);国家自然科学基金项目(41171077,41471096,41371093);国家科技基础性工作专项(2012FY111700)

Responses of Carbon Dioxide Fluxes from Biological Soil Crusted Soils to Pulse Rain in Arid Desert Ecosystem

  • Jia Xiaohong ,
  • Gu Chen ,
  • Wu Bo ,
  • Li Yuanshou ,
  • Cheng Long ,
  • Li Xinrong
Expand
  • 1. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China;
    2. Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. Chinese Academy of Meteorological Science, Beijing 100081, China

Received date: 2015-11-23

  Revised date: 2016-01-30

  Online published: 2016-03-20

摘要

水分是干旱区生态过程中主要限制因子,降水可通过改变土壤的干湿状况直接影响土壤的生态过程,继而引起土壤碳库的变化。生物土壤结皮作为干旱区主要的地表覆盖物,其自身不但可以进行呼吸作用,还能充分利用有限的水分通过光合作用固碳,改变土壤圈与大气圈之间的碳交换通量。通过模拟0、2、5、8、15 mm降雨,利用红外气体分析仪,对腾格里沙漠东南缘人工固沙植被区主要的生物土壤结皮覆盖土壤净CO2通量进行了原位测定,探讨生物土壤结皮覆盖土壤CO2释放和光合固定CO2(吸收)共同作用下的土壤净CO2通量对模降雨的响应特征。结果表明:(1)降雨会迅速激发生物土壤结皮覆盖土壤CO2释放,降雨激发CO2释放速率和有效时间取决于降雨量,降雨量越高,激发程度越低,激增的生物土壤结皮覆盖土壤CO2释放(源)效应有效时间随降雨量的增加而延长;降雨激发的土壤碳释放总量随着降雨量的增加显著增加,且藓类结皮覆盖土壤碳释放总量显著高于藻类结皮(P<0.05)。(2)降雨引起生物土壤结皮覆盖土壤CO2吸收速率在初期呈单峰变化,后逐渐回归到降雨前的水平,随降雨量的增加,CO2吸收的效应的时间越长,峰值越高;降雨量越高,生物土壤结皮光合碳固定量越多,当降雨量增加到15 mm时,藻类结皮光合碳固定量显著低于8 mm时的碳固定量;降雨量<5 mm时,藓类结皮光合碳固定量显著低于藻类结皮(P<0.05),≥5 mm时,藓类结皮光合碳固定量显著高于藻类结皮(P<0.05)。(3)干旱荒漠地区生物土壤结皮覆盖土壤,在无降雨的干旱期表现为较低水平的净碳排放效应,不同程度降雨的初期阶段都有短暂的增加土壤碳的汇效应,且碳汇效应的时间随降雨量的增加而延长;适度的降雨会降低长期干旱藻类结皮覆盖土壤向大气的碳排放量,而过高或过低的降雨都会不同程度地增加藻类结皮覆盖土壤向大气的碳排放,降低土壤碳的储量。不论降雨量大小,降雨都会增加藓类结皮覆盖土壤更多碳向大气排放,但随着降雨量的增加,源效应逐渐减弱。降雨量≤8 mm时,藓类结皮覆盖土壤净碳排放总量显著高于藻类结皮(P<0.05),当降雨量>8 mm时,藓类结皮覆盖土壤净碳排放量显著低于藻类结皮覆盖土壤(P<0.05)。因此,干旱区在估算生物土壤结皮覆盖土壤与大气碳交换对降雨的响应规律时,应该充分考虑降雨量大小对生物土壤结皮碳固定量和土壤碳释放组分的效应,明确降雨事件大小对不同类型生物土壤结皮覆盖土壤与大气之间碳交换的作用。

本文引用格式

贾晓红 , 辜晨 , 吴波 , 李元寿 , 成龙 , 李新荣 . 干旱沙区生物土壤结皮覆盖土壤CO2通量对脉冲式降雨的响应[J]. 中国沙漠, 2016 , 36(2) : 423 -432 . DOI: 10.7522/j.issn.1000-694X.2015.00199

Abstract

Biological soil crusts (BSC) are an integral part of the soil system in arid regions worldwide, and make an important role in carbon cycle for its photosynthesis and respiration. Rainfall can affect the change of soil carbon pool by altering the soil moisture. BSC in photosynthesis and respiration may change the carbon fluxes between soil and atmosphere by utilizing the limited moisture. The release fluxes and net fluxes of carbon dioxide from biological soil crusted soils were tested under different simulated rainfall (0, 2, 5, 8, 15 mm) in arid desert ecosystem. The resulted showed that rainfall was able to stimulate the release fluxes of carbon dioxide from biological soil crusted soils. The degree and available time of release flux depended on size of rainfall events. Small rainfall motivated higher velocity and shorter release flux of carbon dioxide, but oppositely for large rainfall. The total carbon productions of biological soil crusted soil from release flux increased with the increasing rainfall. Moss dominated crusted soil has higher total carbon production than cyanobacterial-algae dominated crusted soil (P<0.05) in all level of rainfall events. Fluxes of carbon sink for photosynthesis of BSC by reason of rainfall dropped to the level of that without rain after a single peak. Stimulated available time and the peak value of carbon sink velocity were longer and higher for large rainfall. The total carbon production from sequestration increased with augment rainfall in moss dominated crusts. But, when rainfall reaches to 15 mm, cyanobacterial-algae dominated crusts lowered in the total carbon production of sequestration. When the rainfall was lower (<5 mm), the total carbon production of carbon sink from moss dominated crusts was lower than that of cyanobacterial-algae dominated crusts (P<0.05). When the rainfall was higher (≥5 mm), the effect was contrary. Net carbon flux for most of the year in arid region showed a carbon source during the drought, but was transitory carbon uptake at the beginning of rainfall from crusted soil towards atmosphere. The effect of carbon source for cyanobacterial-algae dominated crusted soil can be enhanced in both large and small rainfall events, and moderate rainfall could reduce this kind of effect. Rainfall events no matter size were capable to increase the effect of carbon source from moss dominated crusted soil. But, the enhanced effect of carbon source for moss dominated crusted soil was reduced with increased rainfall. The carbon productions from net carbon release in cyanobacterial-algae crusted soil under less than or equal 8mm rainfall were lower than those of moss crusted soil, adversely under greater than 8mm rainfall. The results suggested that the effect from size of rainfall on carbon release should be taken into account when carbon budget were evaluated between soil and atmosphere in arid region. The role of rainfall size in carbon exchange from crusted soil towards atmosphere should be differentiated in different biological soil crusted soils.

参考文献

[1] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304:1623-1627.
[2] Schlesinger W H,Andrews J A.Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48:7-20.
[3] 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社,2012.
[4] Belnap J,Lange O L.Biological Soil Crusts:Structure,Function,and Management[M].Berlin,Germany:Springer,2003.
[5] Li X R,Zhang P,Su Y G,et al.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of Chian:a four-year field study[J].Catena,2012,97:119-126.
[6] Zhao Y,Li X R,Zhang Z S,et al.The effects of extreme rainfall events on carbon release from biological soil crusts covered soil in fixed sand dunes in the Tengger desert,northern China[J].Sciences in Cold and Arid Regions,2013,5(2):191-196.
[7] Noy-Meir I.Desert ecosystems:environment and producers [J].Annual Review of Ecology and Systematics,1973,4(1):25-51.
[8] Smith S D,Monson R K,Anderson J E.Physiological Ecology of North American Desert Plants[M].Berlin,Germany:Springer,1997.
[9] Cable J M,Huxman T E.Precipitation pulse size effects on Sonoran Desert soil microbial crusts[J].Oecologia,2004,141(2):317-324.
[10] Veenendaal E M,Kolle O,Lloyd J.Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa[J].Global Change Biology,2004,10:318-328.
[11] Hastings S J,Oechel W C,Muhlia-Melo A.Diurnal,seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California Mexico[J].Global Change Biology,2005,11,927-939.
[12] Kurc S A,Small E E.Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland[J].Water Resources Research,2007,43:W06416.
[13] Su Y G,Wu L,Zhou Z B,et al.Carbon flux in deserts depends on soil cover type:a case study in the Gurbantunggute desert,North China [J].Soil Biology & Biochemistry,2013,58:332-340.
[14] Chen S,Lin G,Huang J,et al.Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes [J].Journal of Plant Ecology,2008,1(4):237-246.
[15] Huxman T E,Snyder K A,Tissue D,et al.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems [J].Oecologia ,2004,141:254-268.
[16] IPCC.Climate Change 2007,the Physical Science Basis,Summary for Policymakers [M].Cambridge,UK:Cambridge University Press,2007.
[17] Easterling D R,Meehl G A,Parmesan C,et al.Climate extremes:observations,modeling,and impacts [J].Science,2000,289:2068-2074.
[18] Risch A C,Frank D A.Effects of increased soil water availability on grassland ecosystem carbon dioxide fluxes [J].Biogeochemistry,2007,86:91-103.
[19] Niu S L,Wu M Y,Han Y,et al.Nitrogen effects on net ecosystem carbon exchange in a temperate steppe[J].Global Change Biology,2010,16:144-155.
[20] LICOR Inc.John Deere 840 Tractor Operator's Manual Licor[Z] :Lincoln,USA:2004.
[21] Elbert W,Weber B,B del B,et al.Microbiotic crusts on soil,rock and plants:neglected major players in the global cycles of carbon and nitrogen?[J] Biogeosciences Discussions,2009,9:6983-7015.
[22] Castillo-Monroy A,PMaestre F.Biological soil crusts:recent advancesin our knowledge of their structure and ecological function[J].Revista Chilena De Historia Natural,2011,84(1):1-21.
[23] 徐杰,白学良,田桂泉,等.腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系[J].中国沙漠,2005,25(2):234-242.
[24] Austin A T,Yahdjian L,Stark J M,et al.Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J].Oecologia,2004,141:221-235.
[25] Sponseller R A.Precipitation pluses and soil CO2 flux in a Sonoran Desert ecosystem[J].Global Change Biology,2007,13(2):426-436.
[26] Birch H F.The effect of soil drying on humus decomposition and nitrogen availability[J].Plant and Soil,1958,10:9-31.
[27] 黄磊,张志山,胡宜刚,等.固沙植被区典型生物土壤结皮类型下土壤CO2浓度变化特征及其驱动因子研究[J].中国沙漠,2015,35(6):1583-1590.
[28] Anderson J M.Carbon dioxide evolution from two temperate,deciduous woodland soils[J].Journal of Applied Ecology,1973:361-378.
[29] Luo Y Q,Zhou X H.Soil Respiration and the Environment[M].Beijing:Academic Press,2006.
[30] Kursar T A.Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama[J].Plant and Soil,1989,113:21-29.
[31] Inglima I,Alberti G,Bertolini T,et al.Precipitation pulsesenhance respiration of Mediterranean ecosystems:thebalance between organic and inorganic components of increased soil CO2 efflux [J].Global Change Biology,2009,15:1289-1301.
[32] Halverson L J,Jones T M,Firestone M K.Release ofintracellular solutes by four soil bacteria exposed to dilution stress[J].Soil Science Society of America Journal,2000,4:1630-1637.
[33] Fierer N,Schimel J P.A proposed mechanism for thepulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil[J].Soil Science Society of America Journal,2003,67:798-805.
[34] Schimel J P,Balser T C,Wallenstein M.Microbialstress-response physiology and its implications for ecosystem function[J].Ecology,2007,86:1386-1394.
[35] van Gestel M,Merckx R,Vlassak K.Microbial biomassresponses to soil drying and rewetting:the fate of fast-andslow-growing microorganisms in soils from different climates[J].Soil Biology and Biochemistry,1993,25:109-123.
[36] Wu J,Brookes P C.The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J].Soil Biology and Biochemistry,2005,37:507-515.
[37] Gordona H,Haygarth P M,Bardgett R D.Drying and rewetting effects on soil microbial community composition and nutrient leaching[J].Soil Biology and Biochemistry,2008,40:302-311.
[38] 王新平,李新荣,潘颜霞,等.我国温带荒漠生物土壤结皮孔隙结构分布特征[J].中国沙漠,2011,31(1):58-62.
[39] 张志山,何明珠,谭会娟,等.沙漠人工植被区生物结皮类土壤的蒸发特性-以沙坡头沙漠研究试验站为例[J].土壤学报,2007,44(3):404-410.
[40] Sala O E,Laurenroth W K.Small rainfall events:an ecological role in semiarid regions[J].Oecologia,1982,53:301-304.
[41] Lauenroth W K,Bradford J B.Ecohydrology of dry regions of the United States:precipitation pulses and intraseasonal drought[J].Ecohydrology,2009,2:173-181.
[42] Lange O L,Meyer A,Zellner H,et al.Photosynthesis and water relations of lichen soil crusts:field measurements in the coastal fog zone of the Namib Desert[J].Functional Ecology,1994,8:253-264.
[43] 李守中,肖洪浪,罗芳,等.沙坡头植被固沙区生物结皮对土壤水文过程的调控作用[J].中国沙漠,2005,25(2):228-233.
[44] Chamizo S,Cantón Y,Lázaro R,et al.Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems[J].Ecosystems,2012,15(1):148-161.
文章导航

/