img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

砾石级沙粒胶结体抗风蚀效益的实验研究

  • 孙娜 ,
  • 李生宇 ,
  • 马学喜 ,
  • 王海峰 ,
  • 徐新文
展开
  • 1. 中国科学院新疆生态与地理研究所, 新疆 乌鲁木齐 830011;
    2. 中国科学院大学, 北京 100049
孙娜(1990-),女,山东聊城人,硕士研究生,主要从事风沙地貌及荒漠化防治研究。Email:sunna19900111@sina.com

收稿日期: 2014-12-22

  修回日期: 2015-02-03

  网络出版日期: 2016-05-20

基金资助

新疆维吾尔自治区重大科技专项课题(201130106-3)

Wind Tunnel Experiment on the Anti-erosion Benefits of Gravel-size Cemented Bodies from Inter-dune Corridors in the Hinterland of the Taklimakan Desert

  • Sun Na ,
  • Li Shengyu ,
  • Ma Xuexi ,
  • Wang Haifeng ,
  • Xu Xinwen
Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-12-22

  Revised date: 2015-02-03

  Online published: 2016-05-20

摘要

塔克拉玛干沙漠腹地部分垄间地表发育了一种由众多沙粒胶结而成的大颗粒物质,称为沙粒胶结体(sand cemented bodies,缩写为SCB),其直径达到粗沙级、极粗沙级和砾石级。为了研究其对地表风沙活动的影响,本研究以野外采集的砾石级沙粒胶结体(gravel-size sand cemented bodies,缩写为GSSCB)为实验材料,在净风和挟沙风条件下进行了GSSCB覆盖沙面的抗风蚀模拟实验。结果表明:床面的蚀积状态与来流条件、GSSCB覆盖度和风速均有关,净风时所有覆盖度床面均呈风蚀状态,挟沙风时随覆盖度和风速而变化,床面可呈3种状态-风蚀、蚀积平衡、风积;在风蚀状态时,床面风蚀率随覆盖度增大以指数形式降低,随风速增大而以多种函数形式增加,抗风蚀效率随覆盖度增大而逐渐增加,但不同覆盖度范围增加率不同;挟沙风条件下呈蚀积平衡状态时的床面覆盖度临界Cb值与风速大小有关,随风速增加呈幂函数形式增加;在挟沙风条件下,覆盖度大于Cb值时床面呈风积状态,积沙率与风速的关系较为复杂,80%覆盖度床面积沙率随风速增大呈对数形式增加,但40%覆盖度床面积沙率则随风速增加呈指数形式降低。可见,由于与砾石的物理性质相近,GSSCB覆盖确实具有与砾石相类似的抗风蚀效益,并且在一定覆盖度条件下还能捕获风沙流挟沙颗粒。因此,塔克拉玛干沙漠腹地丘间地天然发育的GSSCB对于地表蚀积过程具有重要影响。GSSCB可作为一种新型固沙技术进行开发。

本文引用格式

孙娜 , 李生宇 , 马学喜 , 王海峰 , 徐新文 . 砾石级沙粒胶结体抗风蚀效益的实验研究[J]. 中国沙漠, 2016 , 36(3) : 575 -580 . DOI: 10.7522/j.issn.1000-694X.2015.00048

Abstract

There are some larger granular materials whose diameter reach the level of coarse sand, very coarse sand and gravel, naturally distributed on some inter-dune corridors in the hinterland of the Taklimakan Desert. They were made up of a mass of sands which be cemented together by a certain substance, we call them sand cemented bodies (SCB). In order to research the effect of SCB on windblown sand movement, this study investigated the anti-wind erosion ability of the sand surface being covered with gravel-size sand cemented bodies (GSSCB) collected in the field by wind tunnel simulation in net-wind conditions and sand-driving wind conditions respectively. The results indicate that the conditions of erosion-deposition on sand surface depended on the inflow conditions, wind speeds and degrees of GSSCB coverage. All sand beds in all GSSCB coverage treatments showed an erosion status under net-wind condition. But there were three conditions of erosion, erosion-deposition balance and deposition under sand-driving wind conditions, the conditions varied with the degree of GSSCB coverage and wind speed. When the sand beds were in a condition of erosion, the erosion rates decreased exponentially with the increasing degree of GSSCB coverage and increased in forms of different functions with the increasing wind speed. As the coverage rise, the anti-wind erosion rates gradually increased, but the increased ratios were different in different ranges of GSSCB coverage. When the sand bed showed in a condition of erosion-deposition balance under a sand-driving wind condition, its degree of GSSCB coverage reached a critical value Cb in that environment. The value of Cb increased with the increasing speed, whose relationship could be described as a power function. When the coverage was greater than Cb, the sand bed showed a sand deposition status; however, the relation between the sand deposition rates and wind speeds was complex. The sand deposition rates increased as a logarithm function at the coverage of 80% and decreased as an exponent form at the coverage of 40% with the raising wind speed under the sand-driving wind condition. As a result, for the similar physical natures like gravel, the GSSCB coverage does have an anti-erosion benefits for the sand surface, GSSCB can also capture windblown sand from wind-sand flow at a given coverage. So we should pay attention to the effect of GSSCB on the windblown sand movement in the hinterland of the Taklimakan Desert in future aeolian research. A new type of sand fixation technology can be developed soon inspired by GSSCB.

参考文献

[1] 韩致文,王涛,董治宝,等.风沙危害防治的主要工程措施及其机理[J].地理科学进展,2004,23(1):13-21.
[2] 董治宝,王涛,屈建军.100 a来沙漠科学的发展[J].中国沙漠,2003,23(1):1-5.
[3] Dong Z B,Wang H T,Liu X P,et al.A wind tunnel investigation of the influences of fetch length on the flux profile of a sand cloud blowing over a gravel surface[J].Earth Surface Process and Landforms,2004,29:1613-1626.
[4] 董治宝,高尚玉,Fryrear D W.直立植物-砾石覆盖组合措施的防风蚀作用[J].水土保持学报,2000,14(1):7-11,17.
[5] 刘连友,刘玉璋,李小雁,等.砾石覆盖对土壤吹蚀的抑制效应[J].中国沙漠,1999,19(1):60-62.
[6] 薛娴,张伟民,王涛.戈壁砾石防护效应的风洞实验与野外观测结果——以敦煌莫高窟顶戈壁的风蚀防护为例[J].地理学报,2000,55(3):375-383.
[7] Zhang W M,Wang T,Wang W F,et al.The gobi sand stream and its control over the top surface of the Mogao Grottoes,China[J].Bulletin of Engineering Geology and the Environment,2004,63(3):261-269.
[8] Mckenna N C.Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted,upwind supply of sediment[J].Geomorphology,1998,25(1/2):1-17.
[9] 邹学勇,刘玉璋,吴丹,等.若干特殊地表风蚀的风洞实验研究[J].地理研究,1994,13(2):41-48.
[10] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].New York,USA:Morrow & Company,1941:167-171.
[11] 董治宝,屈建军,刘小平,等.戈壁表面阻力系数的实验研究[J].中国科学(D辑),2001,31(11):953-958.
[12] Lyles L.Soil wind erodibility index in seven north central states Frans[J].ASAE,1988,31(3):1396-1399.
[13] Marshall J K.Drag measurements in roughness arrays of varying density and distribution[J].Agriculture Meteorology,1971,8:269-296.
[14] 尹永顺.砾漠大风地区风沙流研究[J].中国沙漠,1989,9(4):27-36.
[15] 兹纳门斯基 A N.沙地风蚀过程的实验研究和沙堆防止问题[M].杨郁华,译.北京:科学出版社,1958:8-52.
[16] 王训明,董治宝,陈广庭.塔克拉玛干沙漠中部部分地区风沙环境特征[J].中国沙漠,2001,21(1):56-61.
[17] 王训明,郎丽丽,花婷,等.戈壁砾石覆盖度与风蚀强度关系实验研究[J].中国沙漠,2013,33(2):313-319.
[18] 张伟民,谭立海,张克存,等.不同砾石覆盖度床面蚀积过程的野外风洞实验研究[J].地理科学,2012,32(11):1370-1376.
文章导航

/