img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

土地利用方式对荒漠草地生物量分配及碳密度的影响

  • 刘文亭 ,
  • 卫智军 ,
  • 吕世杰 ,
  • 孙世贤 ,
  • 代景忠
展开
  • 1. 内蒙古农业大学 生态环境学院, 内蒙古 呼和浩特 010019;
    2. 内蒙古农业大学 理学院, 内蒙古 呼和浩特 010019;
    3. 中国农业科学院草原研究所, 内蒙古 呼和浩特 010010
刘文亭(1990-),男,内蒙古呼和浩特人,博士研究生,主要从事草地生态研究。E-mail:nmgliuwenting@163.com

收稿日期: 2014-12-25

  修回日期: 2015-03-12

  网络出版日期: 2016-05-20

基金资助

国家重点基础研究发展计划项目(2014CB138805);国家自然科学基金项目(31460126);国家科技支撑计划项目(2012BAD13B00);内蒙古自然科学基金项目(2015MS0349)

Estimation of Biomass Stratose Allocation and Carbon Density in Different Land-use Types in Stipa breviflora Desert Grassland

  • Liu Wenting ,
  • Wei Zhijun ,
  • Lv Shijie ,
  • Sun Shixian ,
  • Dai Jingzhong
Expand
  • 1. College of Ecology and Environmental Science Hohhot 010019, China;
    2. College of Science, Inner Mongolia Agricultural University; Hohhot 010019, China;
    3. Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot 010010, China

Received date: 2014-12-25

  Revised date: 2015-03-12

  Online published: 2016-05-20

摘要

草地生态系统群落生物量的分配模式对于研究生态系统碳储量和碳循环有着重要的意义。为了解内蒙古荒漠草地群落生物量垂直分配格局,从不同土地利用方式着手探讨群落生物量不同成层性分配规律并估算荒漠草地生物量碳密度。结果表明:(1)人工灌溉草地灌木层生物量明显高于放牧和原生草地,草本层生物量表现出灌溉草地>原生草地>放牧草地,而凋落物层表现出灌溉草地<放牧草地<原生草地,地上生物量集中在草本层(60%以上),地下0~10 cm生物量大于其他层生物量(P<0.05)。(2)灌木层生物量、草本层生物量、凋落物层间存在极显著的相关关系(P<0.0001);地下各层生物量之间存在极显著相关关系(P<0.0001);且灌溉草地与原生草地群落地上层生物量与地下层生物量之间存在显著相关关系(P<0.05),故可以建立生物量成层性分配模型。(3)生物量碳密度原生草地<放牧草地<灌溉草地。

本文引用格式

刘文亭 , 卫智军 , 吕世杰 , 孙世贤 , 代景忠 . 土地利用方式对荒漠草地生物量分配及碳密度的影响[J]. 中国沙漠, 2016 , 36(3) : 666 -673 . DOI: 10.7522/j.issn.1000-694X.2015.00045

Abstract

The allocation of community biomass is highly meaningful in research of carbon storage and cycling in grassland ecosystems. Our objective is to characterize biomass allocation patterns of desert grassland by providing a detailed study of stratose allocation and carbon density in different land-use types. The results showed that manual irrigation sample area Shrubs layer biomass was significantly higher than the grazing and original grass. The biomass of grass layer showed that manual irrigation grassland was over original grassland and grazing grassland, and original grassland was greater than grazing grassland, which the biomass of litter layer was opposite. Above-ground stratose biomass concentrated on grass layer (more than 60%) and below-ground 0-10 cm layer biomass was significantly greater than other layer biomass (P<0.05). There were extremely significant correlations (P<0.0001) among grass layer, litter layer, Shrubs layer biomass, between each layer of below-ground biomass. And the biomass of above- and below-ground stratose biomass were also significantly correlated (P<0.05) in original ecology sample area and manual irrigation sample area. So we could establish biomass stratose distribution model. The mean biomass carbon density of manual irrigation grassland was over original grassland and grazing grassland, and original grassland was greater than grazing grassland.

参考文献

[1] Mooney H A,Duraiappah A,Larigauderie A. Evolution of natural and social science interactions in global change research programs[J].Proceedings of the National Academy of the Sciences of the United States of America,2013,110(Suppl 1): 3665-3672.
[2] Sterling S M,Ducharne A,Polcher J.The impact of global land-cover change on the terrestrial water cycle[J].Nature Climate Change,2012,3(4):385-390.
[3] Yang Y S,Xie J S,Sheng H,et al.The impact of land use cover change on storage and quality of soil organic carbon in midsubtropical mountainousarea of southern China[J].Journal of Geographical Sciences,2009,19(1):49-57.
[4] 宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932.
[5] 王敏,苏永中,杨荣,等.黑河中游荒漠草地地上和地下生物量的分配格局[J].植物生态学报,2013,37(3):209-219.
[6] 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014,23(2):38-48.
[7] 周华荣.旬河流域灌丛植被垂直分异规律的研究[J].西北植物学报,1998,18(4):629-636.
[8] 李博.生态学[M].北京:高等教育出版社,2000.
[9] 廖文旺.植物群落的成层性现象在农业生产上的运用[J].柳州师专学报,1996,11(4):94-98.
[10] Jackson R B,Canadell J,Ehleringer J R,et al.A global analysis of root distributions for terrestrial biomes[J].Oecologia,1996,108(3):389-411.
[11] 马文红,方精云.内蒙古温带草原的根冠比及其影响因素[J].北京大学学报:自然科学版,2006,6(42):774-778.
[12] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
[13] Cairns M A,Brown S,Helmer E H,et al.Root biomass allocation in the world's upland forests[J].Oecologia,1997,111(1):1-11.
[14] Mokany K,Raison R,Prokushkin A S.Critical analysis of root:shoot ratios in terrestrial biomes[J].Global Change Biology,2006,12(1):84-96.
[15] Yang Y H,Fang J Y,Ma W H,et al.Large-scale pattern of biomass partitioning across China's grasslands[J].Global Ecology and Biogeography,2010,19(2):268-277.
[16] Fan J W,Wang K,Harris W,et al.Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia[J].Journal of Arid Environments,2009,73(4/5):521-528.
[17] 杨昊天,李新荣,王增如,等.腾格里沙漠东南缘4种灌木的生物量预测模型[J].中国沙漠,2013,33(6):1699-1704.
[18] Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295(5559):1517-1520.
[19] Cheng D L,Niklas K J.Above- and below-ground biomass relationships across 1534 forested communities[J].Annals of Botany,2007,99(1):95-102.
[20] Kohyama T.Size-structured tree populations in Gap-Dynamic forest-The forest architecture hypothesis for the stable coexistence of species[J].Journal of Ecology,1993,81(1):131-143.
[21] Enquist B J,West G B,Charnov E L,et al.Allometric scaling of production and life-history variation in vascular plants[J].Nature,1999,401(6756):907-911.
[22] Iida Y,Kohyama T S,Kobo T,et al.Tree architecture and life-history strategies across 200 co-occurring tropical tree species[J].Functional Ecology,2011,25(6):1260-1268.
[23] 钟泽兵,周国英,杨路存,等.柴达木盆地几种荒漠灌丛植被的生物量分配格局[J].中国沙漠,2014,34(4):1042-1048.
[24] Westoby M,Falster D S,Moles A T,et al.Plant ecological strategies:some leading dimensions of variation between species[J].Annual Review of Ecology and Systematics,2002,33:125-159.
[25] 李尝君,郭京衡,曾凡江,等.多枝怪柳(Tamarix ramosissima)根、冠构型的年龄差异及其适应意义[J].中国沙漠,2015,35(2):365-372.
[26] 孙栋元,赵成义,王丽娟,等.荒漠植物构型研究进展[J].水土保持研究,2011,18(5):281-287.
[27] 郑元润.大青沟森林植物群落主要木本植物生态位研究[J].植物生态学报,1999,23(5):475-479.
[28] Bloom A J,Chapin F S,Mooney H A.Resource limitation in plants-an economic analogy[J].Annual Review of Ecology and Systematics,1985,16:363-392.
[29] Chapin F S,Bloom A J,Field C B,et al.Plant responses to multiple environmental factors[J].BioScience,1987,37(1):49-57.
[30] 牛攀新,宋于洋,周朝彬.准噶尔盆地梭梭群落生物量和碳储量[J].生态学报,2014,34(14):3962-3968.
[31] 吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.
[32] Ni J.Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change[J].Climatic Change,2001,49(3):339-358.
[33] Li L H,Chen Z Z.Changes in soil carbon storage due to over-grazing in Leymus chinensis steppe in the Xilin river basin of Inner Mongolia[J].Journal of Environmental Science,1997,9(4):486-490.
[34] 李文华.中国当代生态学研究[M].北京:科学出版社,2013.
文章导航

/