img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

风水复合侵蚀研究进展与展望

  • 杨会民 ,
  • 王静爱 ,
  • 邹学勇 ,
  • 史培军
展开
  • 1. 北京师范大学 地理学与遥感科学学院, 北京 100875;
    2. 北京师范大学 区域地理研究实验室, 北京 100875;
    3.北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875;
    4. 北京师范大学 环境演变与自然灾害教育部重点实验室, 北京 100875;
    5. 河北科技师范学院 生命科技学院, 河北 秦皇岛 066004
杨会民(1983-),男,河南许昌人,博士研究生,主要从事土壤侵蚀、自然灾害与生态环境安全评价研究.E-mail:hmyang09@163.com

收稿日期: 2015-03-03

  修回日期: 2015-03-26

  网络出版日期: 2016-07-20

基金资助

国家自然科学基金项目(41271286);国家自然科学基金创新研究群体科学基金项目(41321001)

Progress and Prospect of Research on Wind-water Complex Erosion

  • Yang Huimin ,
  • Wang Jing'ai ,
  • Zou Xueyong ,
  • Shi Peijun
Expand
  • 1. School of Geography, Beijing Normal University, Beijing 100875, China;
    2. Key Laboratory of Regional Geography, Beijing Normal University, Beijing 100875, China;
    3. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China;
    4. Ministry of Education Key Lab of Environment Change and Natural Disaster, Beijing Normal University, Beijing 100875, China;
    5. College of Life Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, Hebei, China

Received date: 2015-03-03

  Revised date: 2015-03-26

  Online published: 2016-07-20

摘要

风水复合侵蚀是干旱,半干旱区一种常见的土壤侵蚀类型,是风水两相外营力相互耦合驱动下发生的地表物质再分配过程。在辨析风水复合侵蚀类型的基础上,将风水复合侵蚀影响因子归结为侵蚀动力因子、土壤抗蚀性因子与干扰因子,并分析了影响因子间的互馈关系;从全球尺度、区域尺度和局地尺度,总结了风水复合侵蚀在空间尺度上的差异;评述了风水共同侵蚀过程中侵蚀力与侵蚀能量的叠加效应,风水交替侵蚀过程中侵蚀力与侵蚀能量的交替性特征,以及下垫面和干扰因子对风水复合侵蚀的响应;阐述了风力与水力侵蚀在总侵蚀量中的贡献比率与两者叠加所产生的耦合效应;认为风水复合侵蚀实验研究是认识风水复合侵蚀过程与机理的基础,应将风水复合侵蚀过程段研究扩展到全过程研究,同时加强下垫面在风水复合侵蚀中的响应机制以及水蚀与风蚀间的抑制效应研究,以期达到全面客观地认识风水复合侵蚀过程与机制的目的。

本文引用格式

杨会民 , 王静爱 , 邹学勇 , 史培军 . 风水复合侵蚀研究进展与展望[J]. 中国沙漠, 2016 , 36(4) : 962 -971 . DOI: 10.7522/j.issn.1000-694X.2015.00086

Abstract

Wind-water complex erosion is a common type of soil erosion in arid and semi-arid regions. It is a process of material redistribution on soil surface driven by synergistic effects between two-phase exogenic forces of wind and water. Firstly, based on analysis of types of wind-water complex erosion, we divided the impact factors into erosion factor, soil anti-erodibility factor and disturbance factor, and elaborated mutual feedback relationship among the impact factors. Secondly, from the perspectives of global scale, regional scale and local scale, we summarized differences of wind-water complex erosion in spatial scale. Thirdly, we reviewed superpositions of erosivity and erosion energy of wind and rain in wind-water joint erosion, alternation of driving forces, responses of underlying surface and disturbance factors to wind-water alternating erosion, and elaborated the contribution of the two driving forces in total erosion amounts and its synergistic effects in wind-water alternating erosion. Finally, wind-water complex erosion based on experiment is considered as foundation for understanding the process and mechanism of wind-water complex erosion. In future research, we need to expand studies of the process segments to the whole process, enhance studies of the response of underlying surface in the complex erosion, attach importance to restraining effect between wind and water erosion, to understand the process and mechanism of wind-water complex erosion comprehensively and objectively.

参考文献

[1] Bullard J E,Livingstone I.Interactions between aeolian and fluvial systems in dryland environments[J].Area,2002,34(1):8-16.
[2] Belnap J.Surface Disturbances:Their role in accelerating desertification[J].Environmental Monitoring and Assessment,1995,37(1):39-57.
[3] 海春兴,史培军,刘宝元,等.风水两相侵蚀研究现状及我国今后风水蚀的主要研究内容[J].水土保持学报,2002,16(2):50-56.
[4] 李秋艳,蔡强国,方海燕.风水复合侵蚀与生态恢复研究进展[J].地理科学进展,2010,29(1):65-72.
[5] 宋阳,刘连友,严平.风水复合侵蚀研究述评[J].地理学报,2006,61(1):77-88.
[6] Bullard J E,Mctainsh G H.Aeolian-fluvial interactions in dryland environments:examples,concepts and Australia case study[J].Progress in Physical Geography,2003,27(4):471-501.
[7] Bridges E M,Oldeman L R.Global assessment of human-induced soil degradation[J].Arid Soil Research and Rehabilitation,1999,13(4):319-325.
[8] Valentin C,Poesen J,Li Y.Gully erosion:impacts,factors and control[J].Catena,2005,63:132-153.
[9] 冷疏影,冯仁国,李锐,等.土壤侵蚀与水土保持科学重点研究领域与问题[J].水土保持学报,2004,17(1):1-6,26.
[10] El-Baz F,Maingue M,Robinson C.Fluvio-aeolian dynamics in the north-eastern Sahara:the relationship between fluvial/aeolian systems and ground-water concentration[J].Journal of Arid Environments,2000,44(2):173-183.
[11] Lancaster N,Tchakerian V.Linkages between fluvial,lacustrine,and aeolian systems in drylands:a contribution to IGCP Project 413[J].Quaternary International,2003,104(1):1.
[12] 严平,董治宝.从2002年第五届风沙国际会议 (Icar-5) 看沙漠科学研究的发展趋势[J].干旱区地理,2004,27(3):451-454.
[13] Field J P,Breshears D D,Whicker J J.Toward a more holistic perspective of soil erosion:why aeolian research needs to explicitly consider fluvial processes and interactions[J].Aeolian Research,2009,1(1):9-17.
[14] Belnap J,Munson S M,Field J P.Aeolian and fluvial processes in dryland regions:the need for integrated studies[J].Ecohydrology,2011,4(5):615-622.
[15] 唐克丽,侯庆春,王斌科,等.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[C]//中国科学院水利部西北水土保持研究所集刊(神木水蚀风蚀交错带生态环境整治技术及试验示范研究论文集).1993:2-15.
[16] 查轩,唐克丽,张平仓.水蚀风蚀交错带生态环境演变监测研究方法[J].水土保持通报,1997,17(3):6-11,62.
[17] Breshears D D,Whicker J J,Johansen M P,et al.Wind and water erosion and transport in semi-arid shrubland,grassland and forest ecosystems:quantifying dominance of horizontal wind-driven transport[J].Earth Surface Processes and Landforms,2003,28(11):1189-1209.
[18] Visser S M,Sterk G,Ribolzi O.Techniques for simultaneous quantification of wind and water erosion in semi-arid regions[J].Journal of Arid Environments,2004,59(4):699-717.
[19] 邹学勇,张春来,程宏,等.土壤风蚀模型中的影响因子分类与表达[J].地球科学进展,2014,29(8):875-889.
[20] 王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000,16(4):32-36.
[21] Fister W,Iserloh T,Marzen M,et al.Experimental measurement of wind and water erosion in Aragón and Andalusia,Spain[C].2010.
[22] Erpul G,Norton L D,Gabriels D.Raindrop-induced and wind-driven soil particle transport[J].Catena,2002,47:227-243.
[23] De Lima J L M P,Torfs P J J F,Singh V P.A Mathematical model for evaluating the effect of wind on downward-spraying rainfall simulators[J].Catena,2002,46(4):221-241.
[24] Erpul G,Gabriels D,Cornelis W M,et al.Sand detachment under rains with varying angle of incidence[J].Catena,2008,72:413-422.
[25] Choi E C C.Modelling of wind-driven rain and its soil detachment effect on hill slopes[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90(9):1081-1097.
[26] Iserloh T,Fister W,Marzen M,et al.The role of wind-driven rain for soil erosion an experimental approach[J].Zeitschrift Für Geomorphologie,2013,57(s1):193-201.
[27] Erpul G,Norton L D,Gabriels D.Sediment transport from interrill areas under wind-driven rain[J].Journal of Hydrology,2003,276:184-197.
[28] Reiners W A,Driese K L.Transport processes in nature:propagation of ecological influences through environmental space[M].Cambridge,UK:Cambridge University Press,2004.
[29] Thomas D S,Stokes S,Shaw P A.Holocene aeolian activity in the southwestern Kalahari desert,southern Africa:significance and relationships to late-pleistocene dune-building events[J].The Holocene,1997,7(3):273-281.
[30] Page K J,Nanson G C.Stratigraphic architecture resulting from late quaternary evolution of the riverine plain,south-eastern Australia[J].Sedimentology,1996,43(6):927-945.
[31] Zhu Z,Zou B,Yong Y.The Characteristics of aeolian landform and the control of mobile dunes in china[J].International Geomorphology.Chichester,UK:Wiley,1987:1211-1215.
[32] 史培军,王静爱.论风水两相作用地貌的特征及其发育过程[J].内蒙古林学院学报,1986,8(2):88-97.
[33] Carver R E,Brook G A.Late pleistocene paleowind directions,Atlantic coastal plain,USA[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1989,74(3):205-216.
[34] Mason J A,Knox J C.Age of colluvium indicates accelerated late Wisconsinan hillslope erosion in the upper Mississippi valley[J].Geology,1997,25(3):267-270.
[35] Langford R P.Fluvial-aeolian interactions:part i,modern systems[J].Sedimentology,1989,36(6):1023-1035.
[36] Lancaster N.Winds and sand movements in the Namib Sand Sea[J].Earth Surface Processes and Landforms,1985,10(6):607-619.
[37] Bullard J E,Wiggs G,Nash D J.Experimental study of wind directional variability in the vicinity of a model valley[J].Geomorphology,2000,35(1):127-143.
[38] 刘连友,刘志民,王建华,等.雅鲁藏布江江当宽谷地区沙源物质与现代沙漠化过程[J].中国沙漠,1997,17(4):45-48.
[39] Talbot M R,Williams M.Erosion of fixed dunes in the Sahel,Central Niger[J].Earth Surface Processes,1978,3(2):107-113.
[40] Thomas D,Nash D J,Shaw P A,et al.Present day lunette sediment cycling at witpan in the arid southwestern Kalahari Desert[J].Catena,1993,20:515-527.
[41] 马玉凤,严平,李双权.青海共和盆地威连滩沙地冲沟风水交互作用研究[J].水土保持学报,2012,26(4):37-42.
[42] 王涛,屈建军,姚正毅,等.北方农牧交错带风水蚀复合区水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):28-42.
[43] 许炯心.黄河中游多沙粗沙区的风水两相侵蚀产沙过程[J].中国科学D辑:地球科学,2000,5(30):540-548.
[44] 许炯心.黄河中游风水两相作用对侵蚀产沙地域分布的影响[J].自然科学进展,2007,1(17):49-56.
[45] 颜明,王彩侠,王随继,等.1958-2007年黄土高原沙尘暴和降雨的时空变化研究[J].中国沙漠,2013,33(3):850-856.
[46] 张平仓,唐克丽.六道沟流域有效水蚀风蚀能量及其特征研究[J].土壤侵蚀与水土保持学报,1997,3(2):32-40.
[47] 邹学勇,刘玉璋,吴丹,等.若干特殊地表风蚀的风洞实验研究[J].地理研究,1994,13(2):41-48.
[48] 高学田,唐克丽.神府东胜矿区侵蚀营力及风、水蚀相互作用特征[J].水土保持通报,1995,15(4):33-38.
[49] 许炯心.风水两相作用对黄河流域高含沙水流的影响[J].中国科学D辑:地球科学,2005,35(9):103-110.
[50] 脱登峰,许明祥,郑世清,等.黄土高原风蚀水蚀交错区侵蚀产沙过程及机理[J].应用生态学报,2012,23(12):3281-3287.
[51] 李君兰,蔡强国,孙莉英,等.细沟侵蚀影响因素和临界条件研究进展[J].地理科学进展,2010,29(11):1319-1325.
[52] Johnson C B,Mannering J V,Moldenhauer W C.Influence of surface roughness and clod size and stability on soil and water losses[J].Soil Science Society of America Journal,1979,43(4):772-777.
[53] 吴发启,赵晓光,刘秉正,等.地表糙度的量测方法及对坡面径流和侵蚀的影响[J].西北林学院学报,1998,13(2):17-21.
[54] Sadeghian M R,Mitchell J K.Response of surface roughness storage to rainfall on tilled soil[J].Transactions of the ASAE,1990,33(6):1875-1881.
[55] 张春来,邹学勇,董光荣,等.耕作土壤表面的空气动力学粗糙度及其对土壤风蚀的影响[J].中国沙漠,2002,22(5):473-475.
[56] 何清,杨兴华,艾力·买买提明,等.塔中地区土壤风蚀的影响因子分析[J].干旱区地理,2010,33(4):502-508.
[57] 宋阳,严平,刘连友,等.威连滩冲沟砂黄土的风蚀与降雨侵蚀模拟实验[J].中国沙漠,2007,27(5):814-819.
[58] 秦红灵,高旺盛,马月存,等.免耕条件下农田休闲期直立作物残茬对土壤风蚀的影响[J].农业工程学报,2008,24(4):66-71.
[59] 杨根生,刘阳宣,史培军.黄河沿岸风成沙入黄沙量估算[J].科学通报,1988,33(13):1017-1021.
[60] 马玉凤,丁连刚,严平,等.青海共和盆地多石在沟河道沙丘现代风水交互过程[J].第四纪研究,2008,28(4):695-701.
[61] 马玉凤,严平,李双权.内蒙古孔兑区叭尔洞沟中游河谷段的风水交互侵蚀动力过程[J].中国沙漠,2013,33(4):990-999.
[62] Ta W,Wang H,Jia X.The contribution of aeolian processes to fluvial sediment yield from a desert watershed in the Ordos Plateau,China[J].Hydrological Processes,2014,29(1):80-89.
[63] 中国科学院黄土高原综合科学考察队.黄土高原地区北部风沙区土地沙漠化综合治理[M].北京:科学出版社,1991.
[64] 吴成基,甘枝茂,孙虎,等.河龙区间六条流域产粗沙量研究[J].人民黄河,1997,4:21-24.
[65] 张平仓.水蚀风蚀交错带水风两相侵蚀时空特征研究-以神木六道沟小流域为例[J].土壤侵蚀与水土保持学报,1999,5(3):93-96.
[66] Zhang Y G,Nearing M A,Liu B Y,et al.Comparative rates of wind versus water erosion from a small semiarid watershed in southern Arizona,USA[J].Aeolian Research,2011,3(2):197-204.
[67] 李秋艳,蔡强国,方海燕.黄土高原风水蚀交错带风力作用对流域产沙贡献的空间特征研究[J].水资源与水工程学报,2011,22(4):39-45,49.
[68] 师长兴.风力侵蚀对无定河流域产沙作用定量分析[J].地理研究,2006,25(2):285-293.
[69] 李秋艳,蔡强国,方海燕.风蚀对窟野河流域产沙贡献的时间尺度特征[J].自然资源学报,2011,26(4):674-682.
[70] 脱登峰,许明祥,马昕昕,等.风水交错侵蚀条件下侵蚀泥沙颗粒变化特征[J].应用生态学报,2014,26(2):1-10.
[71] 脱登峰,许明祥,郑世清,等.风水两相侵蚀对坡面产流产沙特性的影响[J].农业工程学报,2012,28(18):142-148.
[72] 张庆印,樊军,张晓萍.水蚀对风蚀影响的室内模拟试验[J].水土保持学报,2012,26(2):75-79.
[73] 许炯心.“十大孔兑”侵蚀产沙与风水两相作用及高含沙水流的关系[J].泥沙研究,2013(6):28-37.
文章导航

/