img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

地形对天山夏季降水影响的模拟

  • 于晓晶 ,
  • 赵勇
展开
  • 1. 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002;
    2. 中亚大气科学研究中心, 新疆 乌鲁木齐 830002
于晓晶(1987-),女,山东海阳人,硕士,助理研究员,主要从事中小尺度数值模拟和数值天气预报方面研究.E-mail:yxj1301@126.com

收稿日期: 2015-04-10

  修回日期: 2015-05-02

  网络出版日期: 2016-07-20

基金资助

国家自然科学基金项目(91437109);中国沙漠气象科学研究基金项目(Sqj2013014);国家科技支撑计划项目(2012BAC23B01)

Simulation of Orographic Effects on Summer Rain in the the Tianshan Mountains

  • Yu Xiaojing ,
  • Zhao Yong
Expand
  • 1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
    2. Center for Central Asian Atmosphere Science Research, Urumqi 830002, China

Received date: 2015-04-10

  Revised date: 2015-05-02

  Online published: 2016-07-20

摘要

地形对局地云和降水的形成、发展过程起着重要作用。由于天山山脉对偏西、偏北气流的阻挡抬升作用,天山西部(喇叭口地形)和北坡中天山(东西走向)一带成为新疆云和降水最集中的地区。以新疆天山山区2013年8月24-26日一次典型强降水过程为例,利用WRFv3.5.1中尺度模式,通过改变初始场中的天山地形高度进行敏感试验,进而揭示天山地形对夏季山区及邻近区域降水的基本影响机制。控制试验较好地模拟出此次降水的空间分布、中心位置及起止时间、降水极大值高度等特征,与观测结果非常吻合。控制试验与敏感试验对比结果表明,天山地形对降水带分布影响不大,但对强降水中心的范围和量级影响显著。降水量与地形高度和抬升凝结高度的相对大小表现出较好的相关性,地形的阻挡抬升作用导致盛行气流产生较强的垂直上升运动,当达到甚至超过抬升凝结高度时,不稳定能量才得以充分释放,进而引起水凝物含量大大增加。地形对主要冰相水凝物雪晶和冰晶的高度分布影响不大,但对二者的中心值和维持时间影响显著。

本文引用格式

于晓晶 , 赵勇 . 地形对天山夏季降水影响的模拟[J]. 中国沙漠, 2016 , 36(4) : 1133 -1143 . DOI: 10.7522/j.issn.1000-694X.2015.00116

Abstract

The orographic dynamic effect plays an important role in the generation and development of local cloud and rainfall. Due to the Tianshan Mountain acting on focusing and lifting the westerly or northerly flow, the cloud and rainfall most focus on the west of Tianshan Mountain (trumpet-shaped) and the middle of its north slope (east-west towards) area in Xinjiang. Sensitivity tests of a typical heavy rainfall event occurred along the Tianshan Mountain from 24th to 26th August 2013 with different terrain height have been carried out employing the Weather Research and Forecasting (WRF) model to study the influence of the Tianshan Mountain' orographic dynamic effect on summer rainfall. The results show that the simulated spatial distribution, the position and the starting and ending time of the rainfall centers and maximum rainfall height of the control test are relatively consistent with one of observations, which means the model outputs can reflect the characteristics of the orographic precipitation in Tianshan Mountain to some extent. It come a general conclusion that the terrain height play slight roles in the rainfall distribution, whereas significant in the area coverage and grades of the heavy rainfall centers by comparing the control test results and the sensitivity ones. The precipitation is closely related to the relative size between the terrain height and the lift convective level (LCL). Owing to the remarkable blocking and uplifting role of the Tianshan Mountain, the prevailing airflow was lifted upward strongly, the instability release fully and more coagulations generate and maintain when the flow came to even exceeded the LCL, which resulted in the remarkable precipitation enhancement on the windward slope of the Tianshan Mountain. The topography plays little role in the distribution of the main coagulations (namely snow and ice) while remarkable in the center value and maintainance.

参考文献

[1] 吴国雄,王军,刘新,等.欧亚地形对不同季节大气环流影响的数值模拟研究[J].气象学报,2005,63(5):603-612.
[2] 廖菲,洪延超,郑国光.地形对降水的影响研究概述[J].气象科技,2007,35(3):309-316.
[3] 朱素行,徐海明,徐蜜蜜.亚洲夏季风区中尺度地形降水结构及分布特征[J].大气科学,2010,34(1):71-82.
[4] Barros A P,Robert J K.Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains[J].Monthly Weather Review,1998,126:2648-2672.
[5] Teng J H,Chen C S,Chen W T.Orographic effects on a squall line system over Taiwan[J].Monthly Weather Review,2000,128:1123-1138.
[6] Lin Y L,Chiao S,Wang T A,et al.Some common ingredients for heavy orographic rainfall[J].Weather and Forecasting,2001,16:633-660.
[7] Rorbber P J,Gyakum J R.Orographic influence on the mesoscale structure of the 1998 ice storm[J].Monthly Weather Review,2003,131:27-50.
[8] 赵桂香.一次阻高背景下地形对晋南特大暴雨的作用分析[J].高原气象,2009,28(4):898-906.
[9] 廖移山,冯新,石燕,等.2008年"7.22"襄樊特大暴雨的天气学机理分析及地形的影响[J].气象学报,2011,69(6):945-955.
[10] 盛春岩,高守亭,史玉光.地形对门头沟一次大暴雨动力作用的数值研究[J].气象学报,2012,70(1):65-77.
[11] Zhang C L,Ji C P,Kuo Y H,et al.Numerical simulation of topography effects on the "00.7" severe rainfall in Beijing[J].Progress in Natural Science,2005,15(9):818-826.
[12] 廖菲,胡娅敏,洪延超.地形动力作用对华北暴雨和云系影响的数值研究[J].高原气象,2009,28(1):115-126.
[13] 刘冀彦,毛龙江,牛涛,等.地形对2011年9月华西致灾暴雨强迫作用的数值模拟研究[J].气象,2013,39(8):975-987.
[14] 熊秋芬,胡江林,张耀存.梅雨锋暴雨数值模拟中地形的作用[J].气象科学,2007,27(6):591-596.
[15] 冀春晓,薛根元,赵放,等.台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验[J].大气科学,2007,31(2):233-244.
[16] 董美莹,陈联寿,程正泉,等.地形影响热带气旋"泰利"降水增幅的数值研究[J].高原气象,2011,30(3):700-710.
[17] 刘裕禄,黄勇.黄山山脉地形对暴雨降水增幅条件研究[J].高原气象,2012,32(2):608-615.
[18] 丁仁海,丁鑫.九华山与周边区域的降水分布差异分析[J].气象,2014,40(4):458-465.
[19] Meyers M P,Cotton W R.Evaluation of the potential for wintertime quantitative precipitation forecasting over mountains terrain with an explicit cloud model.Part I:Two dimension sensitivity experiments[J].Jounal of Applied Meteorology and Climatology,1992,31:26-50.
[20] 刘卫国,刘奇骏.祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅰ):模式云物理方案和地形云结构[J].高原气象,2007,26(1):1-15.
[21] 刘卫国,刘奇骏.祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅱ):云物理过程和地形影响[J].高原气象,2007,26(1):16-29.
[22] 邵元亭,刘奇俊,荆志娟.祁连山夏季地形云和降水宏微观结构的数值模拟[J].干旱气象,2013,31(1):18-23.
[23] 张家宝,邓子风.新疆降水概论[M].北京:气象出版社,1987:160-174.
[24] 张家宝,苏起元,孙沈清,等.新疆短期天气预报指导手册[M].乌鲁木齐:新疆人民出版社,1986:1-456.
[25] 张建新,廖飞佳,王文新,等.中天山北坡云与降水的气候特征[J].新疆气象,2004,27(5):25-34.
[26] 赵勇,崔彩霞,贾丽红,等.中国天山区域云量的变化及其与降水的关系[J].沙漠与绿洲气象,2013,7(6):1-7.
[27] 马玉芬,赵玲,赵勇.一次强天气过程天山地形方案的敏感性试验研究[J].中国沙漠,2012,32(4):1127-1134.
[28] 赵勇,黄丹青,古丽格娜,等.新疆北部夏季强降水分析[J].干旱区研究,2010,27(5):773-779.
[29] 杨莲梅,张云惠,汤浩.2007年7月新疆三次暴雨过程的水汽特征分布[J].高原气象,2012,31(4):963-973.
[30] 赵玉春,王叶红,崔春光.大对流有效位能和条件不稳定下地形降水的三维理想数值研究[J].气象学报,2011,69(5):782-798.
[31] 郭欣,郭学良,付丹红,等.钟形地形动力抬升和重力波传播与地形云和降水形成关系研究[J].大气科学,2013,37(4):786-800.
文章导航

/