img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

基于GF-1遥感影像的艾比湖区域田间尺度土壤盐渍化监测方法

  • 袁泽 ,
  • 丁建丽 ,
  • 牛增懿 ,
  • 李艳华
展开
  • 新疆大学 资源与环境科学学院/绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
袁泽(1991-),男,新疆伊犁人,硕士研究生,主要从事干旱区资源遥感研究.E-mail:yuanze_vip@163.com

收稿日期: 2015-01-11

  修回日期: 2015-04-20

  网络出版日期: 2016-07-20

基金资助

国家自然科学基金项目(U1303381,41261090,41130531);新疆维吾尔自治区青-科技创人才培养工程项目(2013711014);教育部新世纪优秀人才支持计划项目(NCET-12-1075);高分辨率对地观测重大专项(民用部分)(95-Y40B02-9001-13/15-03-01)

Soil Salinization Monitoring in the Ebinur Lake Region at A Field Scale Based on GF-1 Image

  • Yuan Ze ,
  • Ding Jianli ,
  • Niu Zengyi ,
  • Li Yanhua
Expand
  • College of Resources Environmental Science/MOE Key Laboratory of Oasis Ecosystem, Xinjiang University, Urumqi 830046, China

Received date: 2015-01-11

  Revised date: 2015-04-20

  Online published: 2016-07-20

摘要

土壤盐渍化是制约农业生产和发展的主要障碍。目前土壤盐渍化的遥感监测主要基于中、低分辨率卫星影像,并采用传统的基于像元分类方法,对盐渍化信息的细节描述不足,监测精度不高。本文使用国产GF-1影像,结合自上而下的多尺度分割技术和面向对象的信息提取技术,针对田间尺度下的盐渍化信息进行精确地提取、分类,并与传统分类方法进行了对比。结果表明:面向对象法和最大似然法的分类总体精度分别为92.72%和84.31%,Kappa系数分别为0.90和0.78。该技术能准确提取田间尺度下的盐渍地信息,在未来的农田盐渍化高精度监测研究中具有一定应用价值和发展潜力。

本文引用格式

袁泽 , 丁建丽 , 牛增懿 , 李艳华 . 基于GF-1遥感影像的艾比湖区域田间尺度土壤盐渍化监测方法[J]. 中国沙漠, 2016 , 36(4) : 1070 -1078 . DOI: 10.7522/j.issn.1000-694X.2015.00079

Abstract

Soil salinization is the main obstacle of agricultural production and development. At present,it is mainly based on remote sensing monitoring of soil salinization with low or middle resolution satellites, in addition to this, usual uses the traditional classification method based on pixels to monitor the salinization information, so, it is hard to get a detailed description and the monitoring precision is low. This paper use domestic GF-1 combining top-down multi-scale segmentation technology and object-oriented technology of information extraction, aimed at the field scale accurately extract, salinization information classification, and compared with the traditional classification methods. Results show that the object-oriented method and maximum likelihood classification accuracy of 92.72% and 84.31% respectively, in general, the Kappa coefficient was 0.90 and 0.78, respectively. The technology can accurately extract field scales salted information, in the future of farmland salinization high-precision monitoring has certain application value in the research and development potential.

参考文献

[1] Dehaan R L,TayLor G R.Field derived spectra of salinized soils and vegetation as indicators of irrigation induced soil salinization[J].Remote Sensing of Environment,2002,80(3):406-417.
[2] Mettmicht G L,Zinck J A.Remote sensing of soil salinity potentials and constraints[J].Remote Sensing of Environment,2003,85(1):1-20.
[3] 王飞,丁建丽,伍漫春.基于NDVI-SI特征空间的土壤盐渍化遥感模型[J].农业工程学报,2010,26(8):168-173.
[4] 谭军利,康跃虎,焦艳平,等.不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J].农业工程学报,2008,24(6):59-63.
[5] 翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):371-372.
[6] Metternicht G,Zinck J A.Remote Sensing of Soil Salinization:Impact on Land Management[M].New York,USA:Academic Press,2008:1-20.
[7] 杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
[8] 夏军,塔西甫拉提·特依拜,买买提·沙吾提,等.热红外发射率光谱在盐渍化土壤含盐量估算中的应用研究[J].光谱学与光谱分析,2012,32(11):2956-2961.
[9] 李宝富,熊黑钢,龙桃,等.新疆奇台绿洲农田灌溉前后土壤水盐时空变异性研究[J].中国沙漠,2012,32(5):1369-1378.
[10] 刘新华,徐海量,凌红波,等.塔里木河下游典型绿洲滴灌防护林地土壤水盐时空动态[J].中国沙漠,2012,32(6):1604-1610.
[11] Ben-Dor E,Metternicht G,Goldshleger N,et al.Review of remote sensing based methods to assess soil salinity[M]//Metternicht G,Zinck J A.Remote Sensing of Soil Salinization:Impact on Land Management.New York,USA:CRC Press,2008:39-56.
[12] 李建国,濮励杰,朱明,等.土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,67(9):1233-1245.
[13] 丁建丽,张喆,李鑫,等.中亚土库曼斯坦绿洲土壤盐渍化动态演变评估[J].干旱区地理,2013,36(4):571-578.
[14] 乔木,周生斌,卢磊,等.近25 a来塔里木盆地灌区土壤盐渍化时空变化特点与改良治理对策[J].干旱区地理,2011,34(4):604-613.
[15] 依力亚斯江·努尔麦麦提,塔西甫拉提·特依拜.基于Radarsat和TM图像融合与分类的土壤盐渍化信息遥感监测研究[J].测绘科学,2009,34(1):56-59.
[16] 亢庆,于嵘.基于ASTER图像的干旱区土壤盐碱化遥感应用研究[J].干旱区地理,2005,28(5):675-680.
[17] Eldeiry A A,Garcia L A.Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing[J].Soil Science Society of America Journal.2008,72(1):201-211.
[18] Sidike A,Zhao S,Wen Y.Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra[J].International Journal of Applied Earth Observation and Geoinformation,2014,26:156-175.
[19] Allbed A,Kumar L,Aldakheel Y Y.Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries:applications in a date palm dominated region[J].Geoderma,2014,230:1-8.
[20] 唐伟,赵书河,王培法.面向对象的高空间分辨率遥感影像道路信息的提取[J].地球信息科学,2008,10(2):257-262.
[21] 陈生,王宏,沈占锋.面向对象的高分辨率遥感影像桥梁提取研究[J].中国图象图形学报,2009,14(4):585-590.
[22] 乔程,骆剑承,吴泉源,等.面向对象的高分辨率影像城市建筑物提取[J].地理与地理信息科学,2008,24(5):36-39.
[23] 杨叶涛,王迎迎,曾又枝.基于面向对象的高分遥感景观格局提取方法[J].国土资源遥感,2014,26(4):46-50.
[24] Wang R Z.Plant functional types and their ecological responses to salinization in saline grasslands,Northeastern China[J].Photosynthetica,2004(4):511-519.
[25] Mu G J,Yah S,Abuduwalli J,et al.Wind erosion at the dry-up bosom of Aiby Lake-a case study on the sonrce of air dust[J].Science in China(Series D),2002,45:157-164.
[26] 易文斌,唐宏,杨晋科.面向对象的灾害信息遥感提取框架及其应用[J].自然灾害学报,2009,18(5):157-162.
[27] 段光耀,宫辉力,李小娟,等.结合特征分量构建和面向对象方法提取高分辨率卫星影像阴影[J].遥感学报,2014,18(4):760-770.
[28] 亢庆,张增祥,王长友,等.艾比湖绿洲农业区土地利用动态与盐碱化影响的遥感应用研究[J].农业工程学报,2006,22(2):73-78.
[29] 江红南,丁建丽,塔西甫拉提·特依拜,等.基于ETM+数据的干旱区盐渍化土壤信息提取研究[J].土壤学报,2008,45(2):222-228.
[30] 姚春霞,陈振楼,许世远.上海市郊保护地土壤盐分研究[J].环境科学,2007,28(6):1372-1376.
[31] 哈学萍,丁建丽,塔西甫拉提·特依拜.基于SI-Albedo特征空间的干旱区盐渍化土壤信息提取研究-以克里雅河流域绿洲为例[J].土壤学报,2009,46(3):381-390.
[32] Khan N M,Sato Y.Monitoring hydro-salinity status and its impact in irrigated semi-arid areas using IRS-1B LISS-II data[J].Asian Journal of Geoinform,2001,1(3):63-73.
文章导航

/