img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系

  • 曹生奎 ,
  • 曹广超 ,
  • 陈克龙 ,
  • 冯起 ,
  • 李忠勤 ,
  • 张静 ,
  • 汉光昭 ,
  • 林阳阳
展开
  • 1. 青海师范大学 生命与地理科学学院/青海省自然地理与环境过程重点实验室, 青海 西宁 810008;
    2. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000
曹生奎(1979-),男,青海西宁人,博士,教授,主要从事全球变化生态学及生态水文与水资源学研究。E-mail:caoshengkui@163.com

收稿日期: 2015-12-23

  修回日期: 2016-03-07

  网络出版日期: 2016-09-20

基金资助

国家自然科学基金项目(31260130);中国科学院“西部之光”计划项目(科发人教字[2012]179号);中国博士后基金项目(2013M542400);教育部科学技术重点研究项目和青海省重点实验室平台建设项目(2014-Z-Y24,2015-Z-Y01)

Coupling Relationships Between Alpine Wetland Ecosystem CO2 and Vapor Fluxes around the Qinghai Lake

  • Cao Shengkui ,
  • Cao Guangchao ,
  • Chen Kelong ,
  • Feng Qi ,
  • Li Zhongqing ,
  • Zhang Jing ,
  • Han Gaungzhao ,
  • Lin Yangyang
Expand
  • 1. College of Life and Geographical Science/Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Qinghai Normal University, Xining 810008, China;
    2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2015-12-23

  Revised date: 2016-03-07

  Online published: 2016-09-20

摘要

利用涡度相关技术对青海湖高寒湿地生态系统不同时间尺度CO2通量和水汽通量间的耦合关系进行了研究。结果显示:不同天气条件下青海湖高寒湿地生态系统30 min净CO2交换量(NEE)与水汽通量间均显示了极显著负相关关系(P<0.0001);30 min总生态系统生产力(GEP)与水汽通量呈极显著线性正相关关系(P<0.0001);阴天水汽通量参与生态系统净CO2交换和生态系统总碳吸收的比例最高。月均30 min NEE与水汽通量呈极显著线性负相关(R2=0.71,P<0.0001)。从植物返青期、生长期至枯草期,月均30 min的GEP与水汽通量不仅呈极显著线性正相关(P<0.0001),且在生长期和枯黄期阶段表现出极显著一元二次多项式关系(P<0.0001)。在日尺度上,NEE日总量与日蒸散量呈极显著一元二次多项式负相关关系(R2=0.58,P<0.0001);GEP日总量与日蒸散量呈极显著指数正相关(R2=0.42,P<0.0001)。在月尺度上,NEE月总量与月蒸散量呈极显著线性负相关(R2=0.60,P<0.0001),两者还表现为极显著一元二次多项式负相关关系(R2=0.63,P<0.0001)。GEP月总量与月蒸散量呈极显著线性正相关(R2=0.51,P<0.0001),且表现出极显著指数正相关关系(R2=0.64,P<0.0001)。

本文引用格式

曹生奎 , 曹广超 , 陈克龙 , 冯起 , 李忠勤 , 张静 , 汉光昭 , 林阳阳 . 青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J]. 中国沙漠, 2016 , 36(5) : 1286 -1295 . DOI: 10.7522/j.issn.1000-694X.2016.00029

Abstract

This paper studied the coupling relationships between alpine wetland ecosystem CO2 fluxes and vapor fluxes on the different time scales with the eddy covariance techniques in Qinghai Lake. Results showed that alpine wetland ecosystem half-hour CO2 fluxes and vapor fluxes in Qinghai Lake existed in extreme significant negative relationships (P<0.0001), as well as extreme significant and positive linear relationships between half-hour gross ecosystem productivities (GEPs) and vapor fluxes, which the ratio of vapor fluxes participating in ecosystem net CO2 exchanges (NEE) and ecosystem total carbon absorption in the cloudy days was highest. The alpine wetland ecosystem monthly average half-hour NEEs and vapor fluxes showed an extreme significant negative relationship (R2=0.71,P<0.0001). From vegetation green up stage, growing stage to wilt stage, monthly average half-hour GEPs and vapor fluxes not only showed extreme significant positive linear relationship(P<0.0001), but also a quadratic polynomial one(P<0.0001) at growing stage and withering stage. On the daily scale, the alpine wetland ecosystem daily total NEE and evapotranspiration in Qinghai Lake existed in an extreme significant negative a quadratic polynomial nonlinear relationship (R2=0.58,P<0.0001). The alpine wetland ecosystem daily total GEP and evapotranspiration showed an extreme significant positive exponential correlation (R2=0.42,P<0.0001). On the monthly scale, the alpine wetland ecosystem monthly total NEE and evapotranspiration in Qinghai Lake showed an extreme significant negative linear relationship (R2=0.60,P<0.0001), as well as a quadratic polynomial nonlinear negative relationship (R2=0.63,P<0.0001). The alpine wetland ecosystem monthly total GEPs and evapotranspiration showed an extreme significant positive linear correlation (R2=0.51,P<0.0001) as well as a positive exponential relationship (R2=0.64,P<0.0001).

参考文献

[1] 于贵瑞,王秋凤,于振良.陆地生态系统水-碳耦合循环与过程管理研究[J].地球科学进展,2004,19(5):831-838.
[2] 赵风华,于贵瑞.陆地生态系统碳-水耦合机制初探[J].地理科学进展,2008,27(1):32-38.
[3] Xiao J,Sun G,Chen J,et al.Carbon fluxes,evapotranspiration,and water use efficiency of terrestrial ecosystems in China[J].Agricultural and Forest Meteorology,2013,182:76-90.
[4] 宋春林,孙向阳,王根绪.森林生态系统碳水关系及其影响因子研究进展[J].应用生态学报,2015,26(9):2891-2902.
[5] 王玉辉,井长青,白洁,等.亚洲中部干旱区3个典型生态系统生长季水碳通量特征[J].植物生态学报,2014,38(8):795-808.
[6] 刘冉,李彦,王勤学,等.盐生荒漠生态系统二氧化碳通量的年内、年际变异特征[J].中国沙漠,2011,31(1):108-114.
[7] 周琪,李平衡,王权,等.西北干旱区荒漠生态系统通量贡献区模型研究[J].中国沙漠,2014,34(1):98-107.
[8] 张法伟,刘安花,李英年,等.青藏高原高寒湿地生态系统CO2通量[J].生态学报,2008,28(2):453-462.
[9] Hao Y B,Cui X Y,Wang Y F,et al.Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of southwest China[J].Wetlands,2011,31:413-422.
[10] Kayranli B,Scholz M,Mustafa A,et al.Carbon storage and fluxes within freshwater wetlands:A critical review[J].Wetlands,2010,30:111-124.
[11] Meyers T P.A comparison of summer time water and CO2 fluxes over rangeland for well-watered and drought conditions[J].Agricultural and Forest Meteorology,2001,106:205-214.
[12] 曹生奎,曹广超,陈克龙,等.青海湖高寒湿地土壤有机碳含量变化特征分析[J].土壤,2013,45(3):392-398.
[13] 马瑞俊,蒋志刚.青海湖流域环境退化对野生陆生脊椎动物的影响[J].生态学报,2006,26(9):3066-3073.
[14] Webb E K,Pearman G I,Leuning R.Correction of flux measurements for density effects due to heat and water-vapor transfer[J].Quarterly Journal of the Royal Meteorological Society,1980,106:85-100.
[15] Baldocchi D,Hicks B B,Meyers T P.Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods[J].Ecology,1988,69:1331-1340.
[16] Moncrieff J B,Massheder J M,de Bruin H,et al.A system to measure surface fluxes of momentum,sensible heat,water vapour and carbon dioxide[J].Journal of Hydrology,1997,188(1/4):589-611.
[17] Moncrieff J B,Clement R,Finnigan J,et al.Averaging,Detrending and Filtering of Eddy Covariance Time Series,in Handbook of Micrometeorology:A Guide for Surface Flux Measurements[M].Dordrecht,Netherlands Kluwer Academic,2004:7-31.
[18] Morgenstern K,Black T A,Humphreys E R,et al.Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest dung an El Niño/La Niña cycle[J].Agricultural and Forest Meteorology,2004,123:201-219.
[19] Massman W J.Concerning the Measurement of Atmospheric Trace Gas Fluxes with Open-and Closed-path Eddy Covariance System:The WPL Terms and Spectral Attenuation,in Handbook of Micrometeorology:A Guide for Surface Flux Measurements[M].Dordrecht,Netherlands:Kluwer Academic,2004:133-160.
[20] Kljun N,Calanca P,Rotach M W,et al.A simple parameterization for flux footprint predictions[J].Boundary-Layer Meteorology,2004,112:503-523.
[21] 吴家兵,关德新,孙晓敏,等.长白山阔叶红松林CO2交换的涡度通量修订[J].中国科学:D辑(地球科学),2004,34(增刊Ⅱ):95-102.
[22] Burba G,Schmidt A,Scott R L,et al.Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio[J].Global Change Biology,2012,18:385-399.
[23] Nakai T,Shimoyama K.Ultrasonic anemometer angle of attack errors under turbulent conditions[J].Agricultural and Forest Meteorology,2012,18:162-163.
[24] Burba G G,McDermitt D K,Grelle A,et al.Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers[J].Global Change Biology,2008,14(8):1854-1876.
[25] 吉喜斌,赵文智,康尔泗,等.仪器表面加热效应对临泽站开路涡动相关系统CO2通量的影响[J].高原气象,2013,32(1):65-77.
[26] Kato T,Hirota M,Tang Y H,et al.Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau[J].Soil Biology & Biochemistry,2005,37:1966-1969.
[27] Wang S Y,Zhang Y,Lü S H,et al.Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau[J].International Journal of Biometeorology,2015,60(6):1-12.
[28] Lloyd J,Taylor J A.On the temperature dependence of soil respiration[J].Functional Ecology,1994,8:315-323.
[29] Xu L,Baldocchi D D.Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California[J].Agricultural and Forest Meteorology,2004,123:79-96.
[30] Michaelis L,Menten M L.Die kinetic der invertinwirkung[J].Biochemische Zeitschrift,1913,49:333-369.
[31] Falge E,Baldocchi D,Olson R,et al.Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agricultural and Forest Meteorology,2001,107:43-69.
[32] 李春,何洪林,刘敏,等.ChinaFLUX CO2通量数据处理系统与应用[J].地球信息科学,2008,10(5):557-565.
[33] Barr A G,Morgenstern K,Black T A,et al.Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux[J].Agricultural and Forest Meteorology,2006,140:322-337.
[34] Amiro B D,Barr A G,Black T A,et al.Carbon,energy and water fluxes at mature and disturbed forest sites,Saskatchewan,Canada[J].Agricultural and Forest Meteorology,2006,136:237-251.
[35] Eichelmann E,Wagner-Riddle C,Warland J,et al.Evapotranspiration,water use efficiency,and energy partitioning of a mature switchgrass stand[J].Agricultural and Forest Meteorology,2016,217:108-119.
[36] Dixon R K,Brown S,Houghton R A,et al.Carbon pools and flux of global forest ecosystems[J].Science,1994,263:185-190.
[37] Law B E,Falge E,Gu L,et al.Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J].Agricultural and Forest Meteorology,2002,113:97-120.
[38] Yu G R,Zhang L M,Sun X M,et al.Environmental controls over carbon exchange of three forest ecosystems in eastern China[J].Global Change Biology,2008,14(11):2555-2571.
文章导航

/