img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

古尔班通古特沙漠6种荒漠草本植物的生物量分配与相关生长关系

  • 丁俊祥 ,
  • 范连连 ,
  • 李彦 ,
  • 唐立松
展开
  • 1. 中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室/阜康荒漠生态系统研究站, 新疆 乌鲁木齐 830011;
    2. 中国科学院大学, 北京 100049
丁俊祥(1990-),男,新疆人,硕士研究生,主要进行植物生态学研究。E-mail:junxiang116@sina.com

收稿日期: 2015-04-22

  修回日期: 2015-06-10

  网络出版日期: 2016-09-20

基金资助

国家自然科学基金项目(31400394,41301279)

Biomass Allocation and Allometric Relationships of Six Desert Herbaceous Plants in the Gurbantunggut Desert

  • Ding Junxiang ,
  • Fan Lianlian ,
  • Li Yan ,
  • Tang Lisong
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology/Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-04-22

  Revised date: 2015-06-10

  Online published: 2016-09-20

摘要

选取古尔班通古特沙漠6种优势草本(2种短命植物,2种类短命植物,2种一年生长营养期植物),对比分析了生物量分配及相关生长关系的异同。结果表明:(1)粗柄独尾草(Eremurus inderiensis)和细叶鸦葱(Scorzonera pusilla)的地下生物量较高,根冠比分别为1.412、2.751;小花荆芥(Nepeta micrantha)、琉苞菊(Hyalea pulchella)和雾冰藜(Eremurus inderiensis)、角果藜(Scorzonera pusilla)的地下生物量均较小,根冠比无显著差异,分别为0.150,0.184,0.144,0.101;2种类短命植物具有相似的叶片生物量分配比例,但其余4种植物的叶片生物量分配比例均存在显著差异。(2)6种植物的根冠比随个体增大均呈异速减小,而叶片生物量分配比例与植株大小的关系不一致,表现为异速减少(如细叶鸦葱)或保持恒定(如粗柄独尾草)的趋势。(3)小花荆芥和琉苞菊的地下与地上生物量间为等速生长关系,而粗柄独尾草、细叶鸦葱、角果藜以及雾冰藜则呈现出个体越大地下生物量分配比例越少的格局(异速生长);6种植物的地下与叶片生物量间均为等速生长关系,且具有共同的相关生长指数(1.035)。6种植物的根冠比和叶片生物量分配比例的差异不仅与物种自身的遗传特性有关,还受个体大小的影响;地下与地上生物量分配存在等速和异速生长的差异;叶片与地下生物量间具有相同的生物量分配速率,表现出对干旱荒漠环境的趋同适应。

本文引用格式

丁俊祥 , 范连连 , 李彦 , 唐立松 . 古尔班通古特沙漠6种荒漠草本植物的生物量分配与相关生长关系[J]. 中国沙漠, 2016 , 36(5) : 1323 -1330 . DOI: 10.7522/j.issn.1000-694X.2015.00107

Abstract

Six dominant herbs, including two ephemeral plants (Nepeta micrantha and Hyalea pulchella), two ephemeroids (Eremurus inderiensis and Scorzonera pusilla) and two annual plants (Bassia dasyphylla and Ceratocarpus arenarius) were collected in the Gurbantunggut Desert, north-western China. And the biomass allocation and allometric relationships of the six species were investigated in this study. The results show that:(1) E. inderiensis and S. pusilla both allocated relatively more biomass to root and their root to shoot biomass ratio (R/S) were 1.412, 2.751. However, the root biomass of N. micrantha, H. pulchella and B. dasyphylla, C. arenarius were relatively small. The R/S of the four species showed no significant difference and their mean values were 0.150, 0.184, 0.144, 0.101, respectively. Two ephemeroid plants allocated the same ratio biomass to leaf, while the leaf biomass ratio (LBR) of the rest four species were different significantly. (2) R/S of the six species were declined significantly with increasing plant size, while LBR showed no consistent changing with increasing plant size, either decline or remain constant with changing plant size. (3) An isometric relationship between root and shoot were found for the two ephemeral plants (N. micrantha and H. pulchella), while other four species all showed allometric relationship between root and shoot (a>1.0, P<0.05). The six species showed isometric relationship between root and leaf, and a common allometric scaling exponent (1.035) were found. The study indicated that the difference on R/S and LBR for the six desert herbs were not only related to genetic property of species, but also affected by individual size. Additional, though there were difference on allomeric relationship between root and shoot among the six species, the same ratio of biomass allocation between root and leaf also indicated strong functional convergence to arid desert environment.

参考文献

[1] 刘左军,杜国祯,陈家宽.不同生境下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配[J].植物生态学报,2002,26(1):44-50.
[2] Selzer L J,Lencinas M V,Martinez-Pastur G J,et al.Light and soil moisture effects on biomass and its allocation in Osmorhiza depauperata Philippi (Apiaceae)[J].Ecological Research,2013,28(3):469-480.
[3] 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014,23(2):38-48.
[4] Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO2,nutrients and water:a quantitative review[J].Functional Plant Biology,2000,27(12):595-607.
[5] 钟泽兵,周国英,杨路存,等.柴达木盆地几种荒漠灌丛植被的生物量分配格局[J].中国沙漠,2014,34(4):1042-1048.
[6] West G B,Brown J H,Enquist B J.A General Model for the Origin of Allometric Scaling Laws in Biology[J].Science,1997,276(5309):122-126.
[7] Niklas K J.Plant allometry:is there a grand unifying theory?[J].Biological Reviews,2004,79(4):871-889.
[8] 张立运,陈昌笃.论古尔班通古特沙漠植物多样性的一般特点[J].生态学报,2002,22(11):1923-1932.
[9] 兰海燕,张富春.新疆早春短命植物适应荒漠环境的机理研究进展[J].西北植物学报,2008,28(7):1478-1485.
[10] Mckenna M F,Houle G.Why are annual plants rarely spring ephemerals?[J].New Phytologist,2000,148(2):295-302.
[11] 王雪芹,蒋进,雷加强,等.古尔班通古特沙漠短命植物分布及其沙面稳定意义[J].地理学报,2004,58(4):598-605.
[12] 李杨,顾建丽,张璞,等.准噶尔盆地积雪储量的遥感反演及变化特征分析[J].干旱区地理,2010,33(4):623-629.
[13] Ravindranath N H,Ostwald M.Methods for Below-Ground Biomass[M].Carbon Inventory Methods Handbook for Greenhouse Gas Inventory,Carbon Mitigation and Roundwood Production Projects,2007:149-156.
[14] Búrquez A,Martínez-Yrízar A,Núñez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74(10):1240-1247.
[15] 韩文轩,方精云.幂指数异速生长机制模型综述[J].植物生态学报,2008,32(4):951-960.
[16] 程栋梁.植物生物量分配模式与生长速率的相关规律研究[D].兰州:兰州大学,2007.
[17] Falster D S,Warton D I,Wright I J.Smatr:standardized major axis tests and routines[DB/OL].Version 2.0.2006.http://www.bio.mq.edu.au/ecology/SMATR.
[18] 邱娟,谭敦炎,樊大勇.准噶尔荒漠早春短命植物的光合特性及生物量分配特点[J].植物生态学报,2007,31(5):883-891.
[19] 李雪华,李晓兰,蒋德明,等.科尔沁沙地70种草本植物个体和构件生物量比较研究[J].干旱区研究,2009,26(2):200-205.
[20] 艾沙江.新疆郁金香营养生长、个体大小和开花次序对繁殖分配的影响[J].生物多样性,2012,20(3):391-399.
[21] 毛祖美,张佃民.新疆北部早春短命植物区系纲要[J].干旱区研究,1994,11(3):1-26.
[22] Coleman J S,McConnaughay K D M,Ackerly D D.Interpreting phenotypic variation in plants[J].Trends in Ecology and Evolution,1994,9(5):187-191.
[23] Ledig F T,Perry T O.Physiological genetics of the shoot-root ratio[C]//Proceedings of the Society of American Foresters Annual Meeting.Washingon,USA:Society of American Forester,1966:39-43.
[24] Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295(5559):1517-1520.
[25] Wilson J B.A review of evidence on the control of shoot:root ratio,in relation to models[J].Annals of Botany,1988,61(4):433-449.
[26] Gunn S,Farrar J F.Effects of a 4℃ increase in temperature on partitioning of leaf area and dry mass,root respiration and carbohydrates[J].Functional Ecology,1999,13(S1):12-20.
[27] Xie J,Tang L,Wang Z,et al.Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture[J].Plos One,2012,7(7):e41502.
[28] Cheng D L,Niklas K J.Above-and below-ground biomass relationships across 1534 forested communities[J].Annals of Botany,2007,99(1):95-102.
[29] Yang Y H,Fang J Y,Ji C J,et al.Above-and belowground biomass allocation in Tibetan grasslands[J].Journal of Vegetation Science,2009,20(1):177-184.
[30] Yang Y H,Luo Y Q.Isometric biomass partitioning pattern in forest ecosystems:evidence from temporal observations during stand development[J].Journal of Ecology,2011,99(2):431-437.
[31] 王敏,苏永中,杨荣,等.黑河中游荒漠草地地上和地下生物量的分配格局[J].植物生态学报,2013,37(3):209-219.
[32] 陈国鹏,赵文智,何世雄,等.沙柳(Salix psammophila)丛生枝生物量最优分配与异速生长[J].中国沙漠,2016,36(2):357-363.
[33] Wang L,Niu K C,Yang Y H,et al.Patterns of above-and belowground biomass allocation in China's grasslands:evidence from individual-level observations[J].Science China Life Sciences,2010,53(7):851-857.
文章导航

/