在气候变化和人类活动影响下,水资源短缺是干旱区面临的一个严峻问题.解决问题的关键是要深入了解干旱区独特的水循环机理,而分析不同水体中氢氧同位素特征及转化关系,是应用同位素示踪技术研究水循环机理的基础。以呼图壁河流域为研究区,分析了大气降水、河水、地下水和积雪融水氢氧同位素变化特征及不同水体的δD~δ18O关系,探讨了地表水对地下水的补给关系。结果表明:呼图壁河流域大气降水、河水、地下水和积雪融水中δD、δ18O的组成和季节变化差异较大,δD值分别为-86.25‰、-66.66‰、-69.82‰和-150.79‰,而δ18O值依次为-12.42‰、-9.94‰、-10.23‰和-19.42‰;河水受大气降水和冰雪融水的混合补给导致同位素的贫化,积雪融水主要受蒸发的影响导致同位素的富集,而河水和积雪融水对地下水有密切的水力联系,导致地下水同位素的贫化;呼图壁河上游地区河水对地下水的补给仅占到18.45%,而中下游区域的地下水补给占到90%以上。
Water resources are the most critical factors to ecology and society in arid basins, such as the Hutubi River Basin. Isotope technique was convenient to trace this process and reveal the in uence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and D) of surface water and groundwater in the Hutubi River. Through the water stable isotope composition measurement, the characteristics of deuterium (δD) and oxygen 18 (δ18O) were analyzed. It is revealed that:(1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of the Hutubi River, the spatial variability of river water showed a heavier-lighter-heavier' change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O value of Precipitation, surface water; groundwater and snowmelt were -12.42‰, -9.94‰, -10.23‰ and -19.42‰, respectively. the δ2H values of Precipitation, surface water; groundwater and snowmelt were -86.25‰, -66.66‰, -69.82‰ and -150.79‰, respectively.
[1] 张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747.
[2] Sophocleous M.Interactions between groundwater and surface water:the state of the science[J].Hydrogeology Journal,2002,10(1):52-67.
[3] 宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(6):527-537.
[4] Intaraprasong T,Zhan H.A general framework of stream-aquifer interaction caused by variable stream stages[J].Journal of Hydrology,2009,373(1/2):112-121.
[5] Chen J Y,Tang C Y,Sakura Y,et al.Groundwater flow and geochemistry in the lower reaches of the Yellow River:a case study in Shandang Province,China[J].Hydrogeology Journal,2002,10(6):674-674.
[6] Chen Z Y,Nie Z L,Zhang G H,et el.Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin,northwestern China[J].Hydrogeology Journal,2006,14(8):1635-1651.
[7] Zhang J,Letolle R,Martin J M,et al.Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze River) estuarine systems[J].Continental Shelf Research,1990,10(4):369-384.
[8] Liu Y H,An S Q,Xu Z,et al.Spatio-temporal variation of stable isotopes of river waters,water source identification and water security in the Heishui Valley (China) during the dry-season[J].Hydrogeology Journal,2008,16(2):311-319.
[9] Yao T D,Valerie M,Gao J,et al.A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:Observations and simulations[J].Reviews of Geophysics,2013,51:525-548.
[10] 张兵,宋献方,张应华,等.第二松花江流域地表水与地下水相互关系[J].水科学进展,2014,25(3):336-347.
[11] Huang T M,Pang Z H.Changes in groundwater induced by water diversion in the Lower Tarim River,Xinjiang Uygur,NW China:evidence from environmental isotopes and water chemistry[J].Journal of Hydrology,2010,387(3/4):188-201.
[12] Pang Z H,Huang T M,Chen Y N.Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River,Xinjiang Uygur,Western China[J].Hydrological Processes,2010,24(2):147-159.
[13] Pang Z H,Kong Y L,Froehlich K,et al.Processes affecting isotopes in precipitation of an arid region[J].Tellus Series B:Chemical and Physical Meteorology,2011,63(3):352-359.
[14] Wang Y,Chen Y N,Li W H.Temporal and spatial variation of water stable isotopes (18O and 2H) in the Kaidu River basin,Northwestern China[J].Hydrology Process,2014,28:653-661.
[15] Wang P,Yu J J,Zhang Y C,et al.Groundwater recharge and hydrogeochemical evolution in the Ejina Basin,northwest China[J].Journal of Hydrology,2013,476:72-86.
[16] 陈亚宁.中国西北干旱区水资源研究[M].北京:科学出版社,2014.
[17] 范煜婷.塔里木河流域径流组分及特征研究[D].北京:中国科学院大学,2014.
[18] 王荣军.基于环境同位素的融雪期径流分割——以天山北坡军塘湖流域为例[D].乌鲁木齐:新疆大学,2013.
[19] 周海,郑新军,唐立松,等.盐生荒漠土壤水氧、氢同位素组成季节动态[J].中国沙漠,2014,34(1):162-169.
[20] 姚俊强.干旱内陆河流域水资源供需平衡与管理[D].乌鲁木齐:新疆大学,2015.
[21] Yuan F,Miyamoto S.Characteristics of oxygen-18 and deuterium composition in waters from the Pecos River in American Southwest[J].Chemical Geology,2008,255:220-230.