img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

塔克拉玛干沙漠腹地地表辐射与能量平衡

展开
  • 1. 中国气象局乌鲁木齐沙漠气象研究所 塔克拉玛干沙漠大气环境观测试验站, 新疆 塔中 841000;
    2. 中国石油塔里木油田分公司, 新疆 库尔勒 841000;
    3. 新疆农业气象台, 新疆 乌鲁木齐 830002;
    4. 拐子湖气象站, 内蒙古 阿拉善盟 735400
杨帆(1987-),男,甘肃兰州人,助理研究员,主要从事陆气相互作用野外观测研究。E-mail:yangfan309@yeah.net

收稿日期: 2015-10-08

  修回日期: 2015-11-09

  网络出版日期: 2016-09-20

基金资助

国家公益性行业科研专项(GYHY201306066);国家自然科学基金项目(41305107,41175140,41505008)

Surface Radiation and Energy Balance in Hinterland of the Taklimakan Desert

Expand
  • 1. Taklimakan Desert Atmosphere and Environment Station, Institute of Desert Meteorology, China Meteorological Administration, Tazhong 841000, Xinjiang, China;
    2. PetroChina Tarim Oil field Company, Korla 841000, Xinjiang, China;
    3. Xinjiang Agro-Meteorological Observatory, Urumqi 830002, China;
    4. Guaizihu Meteorological Station, Alxa League 735400, Inner Mongolia, China

Received date: 2015-10-08

  Revised date: 2015-11-09

  Online published: 2016-09-20

摘要

利用2013年塔克拉玛干沙漠塔中流动沙面地表辐射、土壤热通量、土壤温湿度和湍流通量观测资料,分析了沙漠腹地地表辐射和能量收支特征及闭合状况。结果表明:除潜热通量外,其余地表辐射各分量和能量平衡分量的月平均日变化结果整体均表现为标准的单峰型日循环形态,其中Rs↓Rs↑变化同步,Rl↑Rl↓滞后Rs↓0.5 ~ 1 h。各分量均表现出夏季高、春秋季次之、冬季低的季节波动性。干旱和极低的植被覆盖造成沙漠腹地全年潜热通量始终较为微弱,约占净辐射的2.8%,感热通量成为能量的主要消耗形式,约占净辐射的49%。偶尔的降水会刺激潜热通量突然增加。地表反照率相对较高且稳定,日变化呈早晚大、正午小的“U”型趋势,并具有明显的冬季高、夏季低的季节波动性,年均值0.28,月均值0.25~0.32。能量残差各月的日变化也均呈单峰曲线,日出后和日落前能量闭合程度最佳,并出现过闭合现象,全年夏季小,春秋季次之,冬季较大,月平均日峰值5.1~99.9 W·m-2。土壤表层热储存是影响该地区能量平衡的重要因子之一,考虑表层土壤热存储后,地表能量闭合率达75.3%,能量闭合率夏季 > 春季 > 秋季 > 冬季,白天相比夜间有大幅提升。

本文引用格式

杨帆, 王顺胜, 何清, 霍文, 杨兴华, 郑新倩, 王毅, 蔡文军, 买买提艾力·买买提依明 . 塔克拉玛干沙漠腹地地表辐射与能量平衡[J]. 中国沙漠, 2016 , 36(5) : 1408 -1418 . DOI: 10.7522/j.issn.1000-694X.2015.00260

Abstract

In this paper, we analyzed the monthly mean diurnal variation characteristics of the surface radiation budget, energy flux and energy closure condition of the Tazhong shifting sandy land by use of surface radiation and turbulent flux data in 2013. The result indicated that except the LE, the monthly average daily variation of each component of surface radiation and energy balance showed the standard unimodal-type daily cycle pattern. Meanwhile, influenced by the difference of seasons, the daily variation curve had apparent seasonal variation characteristics, with every component manifested a feature of being the highest flux in summer, the second in spring and autumn, and the lowest in winter. From the perspective of energy distribution, the whole day LE in all seasons of the Tazhong shifting sandy land always occupied a relatively low percent, and in daytime, H was its main energy consumption form, second to which was G0. However, the occasional rainfall could excite sudden increase of LE. The monthly average daily variation of surface albedo showed a U'shape distribution, and the surface albedo was small in summer and large in winter. The annual average surface albedo was 0.28, and the monthly average albedo varied from 0.25 to 0.32. Energy balance residuals appeared systematic diurnal cycle alternating with negative and positive value, and it was the lowest in summer, the second in spring and autumn, and the highest in winter. The monthly average daily variation peak value of energy balance residuals varied from 5.1 W·m-2 to 99.9 W·m-2. There was a significant change in the energy balance radio between before sunrise and after sunset and appeared instantaneous energy closure phenomenon. The soil heat storage between the surface and the flux plate was important for surface energy balance. The energy closure ratio was 75.3%, which was the highest in summer, spring took the second place, autumn took the third place and winter was the lowest, and better in the daytime than nighttime.

参考文献

[1] Yang T,Wang X Y,Zhao C Y,et al.Changes of climate extremes in a typical arid zone:observations and multimodel ensemble projections[J].Journal of Geophysical Research-Atmospheres,2011,116(D19):106-124.
[2] 张强,王胜.夏季绿洲生态环境对荒漠背景地表能量过程的扰动[J].生态学报,2005,25(10):2459-2466.
[3] 张强,曹晓彦.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学,2003,27(2):245-254.
[4] Holtslag A A M,Ek M.Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY[J].Journal of Applied Meteorology and Climatology,1996,35(2):202-213.
[5] Sellers P J,Hall F Q,Asrar G,et al.The first ISLSCP field experiment (FIFE)[J].Bulletin of American Meteorological Society,1988,69(1):22-27.
[6] Bolle H J,Andre J C,Arrue J L,et al.EFEDA:European field experiment in a desertification-threatened area[J].Annales Geophysicae,1993,11(2/3):173-189.
[7] Halldin S,Gottschalk L,Griend A A V D,et al.NOPEX-a northern hemisphere climate processes land surface experiment[J].Journal of Hydrology,1998,212(1/4):172-187.
[8] 胡隐樵.黑河试验(HEIFE)能量平衡和水汽输送研究进展[J].地球科学进展,1994,9(4):30-34.
[9] 胡隐樵,左洪超.黑河试验(HEIFE)研究获重大成果[J].中国科学院院刊,1996,11(6):447-451.
[10] 吕达仁,陈佐忠,王庚辰,等.内蒙古半干旱草原土壤-植被-大气相互作用——科学问题与实验计划概述[J].气候与环境研究,1997,2(3):199-209.
[11] 吕达仁,陈佐忠,陈家宜,等.内蒙古半干旱草原土壤-植被-大气相互作用(IMGRASS)综合研究[J].地学前缘,2002,9(2):295-305.
[12] 张强,黄荣辉,王胜,等.西北干早区陆-气相互作用试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,27(5):673-679.
[13] 孙昭萱,张强.黄土高原半干旱区陆面温度和能量的气候特征分析[J].中国沙漠,2011,31(5):1302-1308.
[14] 岳平,张强,赵文,等.黄土高原地表能量闭合特征及土壤通量参数化[J].冰川冻土,2012,34(3):583-590.
[15] 沈志宝.黑河地区大气沙尘对地面辐射能收支的影响[J].高原气象,1999,2(28):1-8.
[16] 塔依尔,吕新,杨利勇.石河子垦区沙漠和绿洲下垫面生态条件下能量交换特征[J].中国沙漠,2007,27(3):478-482.
[17] 马迪,吕世华,奥银焕,等.巴丹吉林沙漠不同下垫面辐射特征和地表能量收支分析[J].高原气象,2012,31(3):615-621.
[18] 李建刚,奥银焕,李照国.夏季不同天气条件下沙漠辐射和能量平衡的对比分析[J].地理科学进展,2012,31(11):1443-1451.
[19] 李帅,胡列群,何清,等.塔克拉玛干沙漠腹地地表辐射收支特征研究[J].中国沙漠,2012,32(4):1035-1044.
[20] 金莉莉,何清,李振杰,等.塔克拉玛干沙漠不同下垫面太阳总辐射比较[J].中国沙漠,2014,34(2):498-506.
[21] 严坤,李生宇,雷加强,等.沙漠腹地人工绿地地表能量交换特征[J].干旱区地理,2013,36(3):433-440.
[22] 缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
[23] 温雅婷,焦冰,缪启龙,等.塔克拉玛干沙漠腹地近地层湍流能谱特征分析[J].中国沙漠,2012,32(6):1716-1722.
[24] Liu Y Q,He Q,Zhang H S,et al.Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme[J].Advances in Atmospheric Sciences,2012,29(2):381-390.
[25] Yang X H,He Q,Ali Mamtimin,et al.A field experiment on dust emission by wind erosion in the Taklimakan Desert[J].Acta Meteorologica Sinica,2012,26(2):241-249.
[26] 霍文,何清,杨兴华,等.中国北方主要沙漠沙尘粒度特征比较研究[J].水土保持研究,2011,18(6):6-11.
[27] Webb E K,Pearman G I,Leuning R.Correction of flux measurements for density effects due to heat and water vapor transfer[J].Quarterly Journal of the Royal Meteorological Society,1980,106(477):85-100.
[28] 阳坤,王介民.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学:D辑,2008,38(2):243-250.
[29] 李韧,赵林,丁永建,等.青藏高原地面有效辐射变化及其对表层土温的影响[J].冰川冻土,2011,33(5):1022-1032.
[30] 王延慧.塔克拉玛干沙漠北缘地表能量收支研究[D].乌鲁木齐:新疆师范大学,2013.
[31] 季国良,邹基玲.干旱地区绿洲和沙漠辐射收支的季节变化[J].高原气象,1994,13(3):323-329.
[32] 李德帅,王金艳,王式功,等.陇中黄土高原半干旱草地地表反照率的变化特征[J].高原气象,2014,33(1):89-96.
[33] 孙俊,胡泽勇,荀学义,等.黑河中上游不同下垫面反照率特征及其影响因子分析[J].高原气象,2011,30(3):607-613.
[34] 岳平,张强,杨金虎,等.黄土高原半干旱草地地表能量通量及闭合率[J].生态学报,2011,31(22):6866-6876.
[35] 张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定[J].地理学报,2002,57(3):333-342.
[36] 刘宏谊,杨兴国,张强,等.敦煌戈壁冬夏季地表辐射与能量平衡特征对比研究[J].中国沙漠,2009,29(3):558-565.
[37] 王延慧,买买提艾力·买买提依明,何清,等.塔克拉玛干沙漠北缘地表能量收支特征[J].沙漠与绿洲气象,2014,8(3):34-41.
[38] 肖霞.黄土高原半干旱区荒草地湍流和湍流能量传输特征及能量平衡状况[D].兰州:兰州大学,2011.
[39] 郭建侠,卞林根,戴永久.玉米生育期地表能量平衡的多时间尺度特征分析及不平衡原因的探索[J].中国科学:D辑,2008,38(9):1103-1111.
[40] Wilson K,Goldstein A,Falge E,et al.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology,2002,113(1):223-243.
[41] Foken T.The energy balance closure problem:an overview[J].Ecological Applications,2008,18(6):1351-1367.
文章导航

/