img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

基于高速摄影技术的风沙流输沙通量剖面的风洞实验测量

  • 蒋缠文 ,
  • 董治宝 ,
  • 王晓艳
展开
  • 1. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    2. 渭南师范学院 化学与环境学院/陕西省河流湿地生态与环境重点实验室, 陕西 渭南 714099
蒋缠文(1984-),男,宁夏盐池人,博士,讲师,主要从事风沙物理学研究。E-mail:jiangchanwen@126.com

收稿日期: 2016-03-07

  修回日期: 2016-04-14

  网络出版日期: 2016-09-20

基金资助

国家重大科学研究计划项目(2013CB956001);渭南师范学院人才基金项目(16ZRRC02,16ZRRC03);陕西省军民融合基金项目(16JMR13);渭南师范学院特色学科项目(14TSXK04)

Analysis of the Mass Flux Profiles of An Aeolian Saltating Cloud: wind tunnel measurements by high-speed photography

  • Jiang Chanwen ,
  • Dong Zhibao ,
  • Wang Xiaoyan
Expand
  • 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province/Chemistry and Life Science College, Weinan Normal University, Weinan 714099, Shaanxi, China

Received date: 2016-03-07

  Revised date: 2016-04-14

  Online published: 2016-09-20

摘要

风沙研究者非常重视对输沙通量随高度变化特征的研究,并为寻找可靠的测量手段付出了不懈的努力。基于高速摄影技术获得的沙粒平均水平速度与沙粒数的垂直剖面,推导了较低风速下环境风洞内输沙通量的垂直剖面。结果表明:沙粒平均水平速度随高度呈幂函数增加,颗粒浓度随高度的算数平方根呈指数衰减。由颗粒平均水平速度剖面与浓度剖面的乘积可获得输沙通量剖面。所获得的输沙通量随高度变化曲线在距床面1~3 mm处均有一个明显的拐点,拐点上方输沙通量随高度呈指数衰减。在床面与拐点之间输沙通量没有明显的变化趋势,这可能是由于气流中颗粒间的碰撞以及颗粒与床面碰撞的影响。平均跃移高度和相对衰减系数是描述输沙通量随高度变化的两个重要参数,两者有着很好的相关性,表明了随着风速增加和沙粒粒径减小跃移颗粒可以达到更大的高度,随着风速减小与粒径增大,输沙通量迅速衰减。

本文引用格式

蒋缠文 , 董治宝 , 王晓艳 . 基于高速摄影技术的风沙流输沙通量剖面的风洞实验测量[J]. 中国沙漠, 2016 , 36(5) : 1230 -1237 . DOI: 10.7522/j.issn.1000-694X.2016.00048

Abstract

Aeolian researchers have recognized the importance of measuring the height profile of aeolian saltating flux and devoted a lot of effort to reliable measurement. In this paper, the height profiles of aeolian saltation flux are reconstructed on the basis of the profiles of mean particle velocity and relative particle concentration obtained by high-speed photography, a nonintrusive technique, in a wind tunnel. The results suggest that the mean particle velocity increases with height. The height profile of mean particle velocity can be expressed by a power function. Particle concentration decays exponentially with the square root of height. Mass flux profiles are derived by multiplying the mean particle velocity and concentration profiles. The reconstructed mass flux profiles are characterized by two sections. Above the peak point whose height was range from 1mm to 3mm, mass flux decays exponentially with height. Between the near-surface and the peak point layers, mass flux have no obvious change trend due to the influences of mid-air inter-particle collisions and initial impact on the bed. Two significant parameters, average saltation height and relative decay factor, are proposed to characterize variation with height of aeolian saltating flux. They are well correlated and imply that saltating particles can reach higher levels as wind velocity increases and particle size decreases and that mass flux decays more rapidly as wind velocity decreases and particle size increases.

参考文献

[1] Greeley R J,Iversen I.Wind as a Geological Process[M].Cambridge,UK:Cambridge University Press,1985:33.
[2] Butterfield G R.Near-bed mass flux profiles in aeolian sand transport:High-resolution measurements in a wind tunnel[J].Earth Surface Processes Landforms,1999,24:393-412.
[3] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:448
[4] Bagnold R A.The movement of desert sand[J].Proceedings of the Royal Society of London A,1936,157:594-620.
[5] Ni J R,Li Z S,Mendoza C.Vertical profiles of aeolian sand mass flux[J].Geomorphology,2002,49:205-218.
[6] 陶彬彬,哈斯额尔敦,乌格特茉勒,等.库布齐沙漠南缘抛物线形沙丘表面风速与输沙率的变异[J].中国沙漠,2015,35(6):1445-1452.
[7] 赵国丹,亢力强,邹学勇,等.稳态风沙流中沙粒体积浓度的模型分析[J].中国沙漠,2015,35(5):1113-1119.
[8] 黄新成,刘博,王旭峰,等.基于起跳初速度分布的沙颗粒浓度廓线的数值模拟[J].中国沙漠,2015,35(3):534-541.
[9] 吕萍,董治宝.沙丘动力学数值模拟研究方法综述(I):沙丘周围流场模拟[J].中国沙漠,2015,35(3):526-533.
[10] White B R,Schulz J C.Magnus effect on saltation[J].Journal of Fluid Mechanics,1977,81:497-511.
[11] Zou X Y,Zhu J J.The distribution function of vertical lift-off velocity in an Aeolian saltating cloud[J].Chinese Science Bulletin,1992,23:2175-2177.
[12] Anderson R S,Hallet B.Sediment transport by wind:toward a general model[J].Bulletin of Geological Society of America,1986,97:523-535.
[13] Dong Z B,Liu X P,Li F,et al.Impact-entrainment relationship in a saltating cloud[J].Earth Surface Processes and Landforms,2002,27:641-658.
[14] Shao Y P.Physics and Modeling of Wind Erosion[M].New York,USA:Springer,2000:393.
[15] Stout J E,Zobeck T M.The Wolfforth field experiment:A wind erosion study[J].Soil Science,1996,161:616-632.
[16] Greeley R J,Blumberg D G,Williams S H.Field measurements of the flux and speed of wind-blown sand[J].Sedimentology,1996,43:41-52.
[17] Rasmussen K R,Mikkelsen H E.On the efficiency of vertical array aeolian field traps[J].Sedimentology,1998,45:789-800.
[18] 武生智,郭为进.二维沙丘迎风坡沙粒跃移运动的数值模拟[J].中国沙漠,2014,34(2):307-311.
[19] Dong Z B,Qian G Q,Luo W Y,et al.Analysis of the mass flux profiles of an aeolian saltating cloud[J].Journal of Geophysical Research,2006,111:D16111.
[20] Goossens D,Offer Z Y,London G.Wind tunnel and field calibration of five aeolian sand traps[J].Geomorphology,2000,35:233-252.
[21] Dong Z B,Sun H Y,Zhao A G.WITSEG sampler:A segmented sand sampler for wind tunnel test[J].Geomorphology,2004,59:119-129.
[22] Sterk G,Raats P A C.Comparison of models describing thevertical distribution of wind-eroded sediment[J].Soil Science Society of America Journal,1996,60:1914-1919.
[23] Zou X Y,Wang Z L,Hao Q Z,et al.The distribution of velocity and energy of saltating sand grains in a wind tunnel[J].Geomorphology,2001,36:155-165.
[24] Dong Z B,Wang H T,Liu X P,et al.Velocity profile of a sand cloud blowing over a gravel surface[J].Geomorphology,2002,45:277-289.
[25] Dong Z B,Wang H T,Liu X P,et al.Experimental investigation of the velocity of a sand cloud blowing over a sandy surface[J].Earth Surface Processes and Landforms,2004,29:343-358.
[26] Yang P,Dong Z B,Qian G Q,et al.Height profile of the mean velocity of an Aeolian saltating cloud:wind tunnel measurement by Particle Image Velocimetry[J].Geomorphology,2007,89:320-334.
[27] Owen P,Gillette D.Wind tunnel constraint on saltation[C]//Bardorff-Nielsen O E,Moller J T,Rasmussen K R,et al.Proceedings of the International Workshop on the Physics of Blown Sand.Aarhus,Denmark:University of Aarhus,1985:253-270.
[28] Jiang C W,Dong Z B,Zhang Z C.Measurement of the movement parameters of saltating sand over a flat sand bed using a high-speed digital camera[J].Environmental Earth Sciences,2015,74(6):4865-4874.
[29] 梅凡民,蒋缠文.风沙颗粒运动的数字高速摄影图像的分割算法[J].力学学报,2012,44(1):82-87.
[30] Liu X P,Dong Z B.Experimental investigation of the concentration profile of a blowing sand cloud[J].Geomorphology,2004,60:371-381.
[31] 董飞,刘大有.关于风沙层中颗粒垂向浓度分布规律等的思考[J].力学与实践,1997,19(6):42-44.
[32] 朱久江,戚隆溪,匡震邦.风沙两相流跃移层中沙粒相的速度分布[J].力学学报,2001,33(1):37-45.
[33] 贺大良,申健友,刘大有.风沙运动的三种形式及其测量[J].中国沙漠,1990,10(4):9-17.
[34] Dong Z B,Liu X P,Wang H T,et al.The flux profile of a blowing sand cloud:a wind tunnel investigation[J],Geomorphology,2003,49:219-230.
文章导航

/