img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

新疆焉耆盆地LAI反演及空间分布特征

展开
  • 新疆师范大学 地理科学与旅游学院/干旱区湖泊环境与资源重点实验室, 新疆 乌鲁木齐 830054
阿迪来·乌甫(1992-),女,新疆库车人,硕士研究生,主要从事资源环境遥感。E-mail:Adilagupur@126.com

收稿日期: 2016-05-17

  修回日期: 2016-07-25

  网络出版日期: 2016-09-20

基金资助

新疆维吾尔自治区青-科技创新人才培养工程项目(QN2015YX009);新疆师范大学博士启动基金项目(XJNUBS1528);国家自然科学基金项目(41161007,41461006,41361002);新疆维吾尔自治区重点实验室专项资金项目(2014KL016)

Retrieval and Spatial Distribution of LAI in the Yanqi Basin, Xinjiang, China

Expand
  • Key Laboratory of Lake Environment and Resources in Arid Zone, School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China

Received date: 2016-05-17

  Revised date: 2016-07-25

  Online published: 2016-09-20

摘要

叶面积指数(LAI)是生态系统物质和能量循环过程的重要结构参数。研究植被LAI对监测估算生态环境极其脆弱的内陆干旱区具有理论和实践价值。使用LAI-2000植物冠层分析仪观测焉耆盆地植被LAI,并结合Landsat OLI的NDVI、SAVI、NDMI、NBR、NBR2、MSAVIEVI等植被指数数据建立了LAI的反演模型,探求焉耆盆地LAI的空间分布特征及规律。结果表明:(1)各植被指数与观测的LAI均有明显的相关性。其中,SAVILAI的对数函数模型更好地模拟出研究区的LAIR2=0.84);通过LAI-SAVI模型反演研究区LAI的空间分布,估算精度可达89%(R2=0.82,RMSE=0.23);(2)博斯腾湖小湖湿地、博斯腾湖大湖西北端的黄水沟入湖沼泽区以及焉耆盆地北部冲洪积扇平原绿洲区的LAI值较高,达3.85;焉耆盆地山区和平原区之间的过渡带和博斯腾湖南部的沙漠区LAI较低;(3)焉耆盆地LAI以博斯腾湖为中心环状分布,LAI随着研究区域与湖、河流距离的增加而逐渐降低的趋势。

本文引用格式

阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 姜红, 艾力亚·艾尼瓦尔 . 新疆焉耆盆地LAI反演及空间分布特征[J]. 中国沙漠, 2016 , 36(5) : 1340 -1347 . DOI: 10.7522/j.issn.1000-694X.2016.00107

Abstract

Leaf area index (LAI) is a primary parameter for the energy flows and matter cycles in ecosystems. Since the ecological system in the arid area is extremely fragile, studying the LAI has great theoretical and practical contributions to monitoring and estimating the changes of ecological environment in arid lands. In this paper, we use the Vegetation Indexes (including NDVI, SAVI, NDMI, NBR, NBR2, MSAVI and EVI)-LAI method to estimate the spatial distribution characteristics of LAI value in the Yanqi Basin, Xinjiang, China. The modeling data is comprised of LAI and Vegetation Indexes,which were acquired by field measurements by LAI-2000 and indoor processing work of Landsat OLI remotely sensed image respectively. Then the LAI distribution map was acquired by using validated SAVI-LAI model. The spatial distribution characteristics of LAI in the study area were analyzed. The results show that:(1) All vegetation indices have good relevance with LAI, and among them the logarithmic function model of SAVI and LAI has the highest goodness of fit (R2=0.82). The estimation accuracy of LAI is about 89%, R2=0.86,RMSE=0.23; (2) There are three relatively high value areas in the distribution map of LAI,Bosten Lake Wetland area, the reeds area in the Huangshuigou River in northwest part of Bosten Lake and Oasis area in northern part of Yanqi Basin, and the highest LAI value reaches about 3.85. The LAI has the lower values in the transitional zone between the mountains and the plain area, and the desert area in the south, due to relative low water content for vegetation; (3) The characteristics of the LAI's spatial distribution are:an annular distribution of LAI centered the Bosten lake as a center; The LAI values decreased gradually along with the increase of the distance to the Lake and river.

参考文献

[1] Chen J M,Black T A.Defining leaf area index for non-flat leaves[J].Plant Cell and Environment,1992,15(4):421-429.
[2] Scurlock J M O,Cramer W,Olson R J,et al.Terrestrial NPP:toward a consistent data set for global model evaluation[J].Ecological Applications,1999,9(3):913-919.
[3] Law B E,Tuyl S V,Cescatti A,et al.Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon[J].Agricultural and Forest Meteorology,2001,108(1):1-14.
[4] Liu J,Chen J M,Cihlar J,et al.A process-based boreal ecosystem productivity simulator using remote sensing inputs[J].Remote Sensing of Environment,1997,62(97):158-175.
[5] 王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
[6] 谭一波,赵仲辉.叶面积指数的主要测定方法[J].林业调查规划,2008,33(3):45-48.
[7] Chen J M,Rich P M,Gower S T,et al.Leaf area index of boreal forests:theory,techniques,and measurements[J].Journal of Geophysical Research-Atmospheres,1997,102(D24):29429-29443.
[8] Rautiainen M.Retrieval of leaf area index for a coniferous forest by inverting a forest reflectance model[J].Remote Sensing of Environment,2005,99(3):295-303.
[9] Weiss M,Baret F.Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data[J].Remote Sensing of Environment,1999,70(3):293-306.
[10] Curran P J,Dungan J L,Gholz H L.Seasonal LAI in slash pine estimated with landsat TM[J].Remote Sensing of Environment,1992,39(1):3-13.
[11] 朱绪超,袁国富,易小波,等.基于Landsat 8 OLI影像的塔里木河下游河岸林叶面积指数反演[J].干旱区地理,2014,37(6):1248-1256.
[12] Aboelghar M,Arafat S,Salih A,et al.Retrieving Leaf Area Index from SPOT4 satellite Data[J].The Egyptian Journal of Remote Sensing and Space Sciences,2010,13(2):121-127.
[13] Richardson J J,Moskal L M,Kim S,et al.Modeling Approaches to Estimate Effective Leaf Area Index from Arerial Discrete-return LiDAR[J].Agricultural and Forest Meteorology,2009,149(6/7):1152-1160.
[14] 谢军飞,许蕊.基于MODIS数据的北京植被叶面积指数的时空变化[J].生态学杂志,2014,33(5):1374-1380.
[15] 柳艺博,居为民,朱高龙,等.内蒙古不同类型草地叶面积指数遥感估算[J].生态学报,2011,31(18):5159-5170.
[16] 玉素甫江·如素力,李兰海,比拉力·依明,等.基于Landsat ETM+的内陆湖泊水体信息提取方法研究[J].西北农林科技大学学报:自然科学版,2011,31(18):228-234.
[17] 祖皮艳木·买买提,海米提·依米提,安尼瓦尔·艾则孜.焉耆盆地生态系统服务价值对土地利用/覆被变化的响应[J].中国沙漠,2014,34(1):275-283.
[18] 张俊,周成虎,李建新.新疆焉耆盆地绿洲景观的空间格局及其变化[J].地理研究,2006,25(2):350-358.
[19] 哈丽旦·司地克,玉素甫江·如素力,麦麦提吐尔逊·艾则孜.焉耆盆地气候变化和人类活动对生态系统服务价值的影响研究[J].中国生态农业学报,2016,24(5):684-694.
[20] 玉素甫江·如素力.新疆焉耆盆地二元水循环过程模拟研究[D].北京:中国科学院大学,2015.
[21] Rusuli Y,Li L,Ahmad S,et al.Dynamics model to stimulate water and salt balance of Bosten Lake in Xinjiaing,China[J].Environmental Earth Sciences,2015,74(3):2499-2510.
[22] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4)10-16.
[23] Rouse J W,Haas R H,Schell J A,et al.Monitoring Vegetation Systems in the Great Plains with ERTS[C]//Proceedings of Third Earth Resources Technology Satellite-1Symposium,Greenbelt.NASA SP-351,1974:310-317.
[24] Huete A R.A soil-adjusted vegetation index (SAVI)[J].Remote Sensing of Environment,1988,25(3):295-309.
[25] Wilson E H,sader S A.Detection of forest harvest type using multiple dates of Landsat TM imagery[J].Remote Sensing of Environment,2002,80(3):385-396.
[26] Key C H,Benson N,Ohlen D,et al.The normalized burn ratio and relationships to burn severity:ecology,remote sensing and implementation[C]//Greer J D.Rapid Delivery of Remote Sensing Products;Proceedings of the Ninth Forest Service Remote Sensing Applications Conference.San Diego,USA:American Society of Photogrammetry and Remote Sensing.2002.
[27] Masek J G,Vermote E F,Saleous V N,et al.A Landsat surface reflectance data set for North America,1990-2000[J].IEEE Geoscience and Remote Sensing Letters,2006,3(1):68-72.
[28] Qi J,Huete A R,Moran M S,et al.Interpretation of vegetation indices derived from multi-temporal SPOT images[J].Remote Sensing of Environment,1993,44(1):89-101.
[29] Huete A R,Liu H Q,Batchily K,et al.A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J].Remote Sensing of Environment,1997,59(3):440-451.
文章导航

/