准确预测干旱区地下水埋深,对区域地下水资源的合理开发利用与生态环境保护具有十分重要的意义。以额济纳盆地3个地下水埋深观测井为对象,运用小波变换与支持向量机耦合模型(WA-SVM)对观测井未来1个月的地下水埋深进行了短期预测。为检验WA-SVM的有效性,将模拟结果与未经小波变换的SVM模型进行了对比。结果表明:在对干旱区地下水埋深进行短期预测时,相较于SVM模型,WA-SVM模型的预测精度显著提高。WA-SVM模型在干旱区地下水埋深预测中有更好的适用性,可以为干旱地区地下水埋深动态预测提供新的方法和思路,是资料有限的条件下地下水埋深预测的有效方法。
Prediction of monthly groundwater depth plays an important role in the reasonable utilization and management of groundwater water resources and ecological environmental protection. In this study, a monthly groundwater depth prediction model was built to predict the groundwater depth in 3 typical groundwater monitoring wells of the Ejin Basin by using wavelet-support vector machine (WA-SVM). In order to test the validity of the developed model, comparison was made between the WA-SVM model and the SVM model in terms of different evaluation criteria during validation period. Results showed that performances obtained by WA-SVM were satisfactory and WA-SVM model performed better than SVM model. Finally, it can be concluded that the WA-SVM model we had developed may be considered as an effective tool to establish a short-term monthly groundwater depth forecasting model in semiarid mountain regions where have few meteorological observatories.
[1] Mohanty S,Jha M K,Kumar A,et al.Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India[J].Water Resources Management,2010,24(9):1845-1865.
[2] Chen Y N.Impact of human activities on water resources and ecological problems in Tarim River Basin[J].Journal of Experimental Botany,2003,54(s):61-61.
[3] Alley W M,Reilley T E,Franke O L.Sustainability of Groundwater Resources[R].U.S Geology Survey Circular,1999:1186.
[4] 司建华,冯起,席海洋,等.黑河下游额济纳绿洲生态需水关键期及需水量[J].中国沙漠,2013,33(2):560-567.
[5] Wang P,Yu J,Pozdniakov S P,et al.Shallow groundwater dynamics and its driving forces in extremely arid areas:a case study of the lower Heihe River in northwestern China[J].Hydrological Processes,2014,28(3):1539-1553.
[6] 席海洋,冯起,司建华,等.黑河下游绿洲NDVI对地下水位变化的响应研究[J].中国沙漠,2013,33(2):574-582.
[7] 周茅先,肖洪浪,罗芳,等.额济纳三角洲地下水水盐特征与植被生长的相关研究[J],中国沙漠,2004,24(4):431-436.
[8] 司建华,冯起,席海洋,等.黑河下游额济纳绿洲生态需水关键期及需水量[J].中国沙漠,2013,33(2):560-567.
[9] 赵传燕,李守波,冯兆东.黑河下游地下水波动带地下水时空分布模拟研究:研究区离散化与潜水蒸发空间化[J].中国沙漠,2010,30(1):198-203.
[10] 涂亮,宋汉周.基于Visual Modflow的黑河中游地下水流数值模拟[J].勘察科学技术,2009(2):19-23.
[11] 武选民,陈崇希,史生胜,等.西北黑河额济纳盆地水资源管理研究——三维地下水流数值模拟[J].地球科学:中国地质大学学报,2003,28(5):527-532.
[12] Suryanarayana C,Sudheer C,Mahammood V,et al.An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam,India[J].Neurocomputing,2014,145:324-335.
[13] 张霞,李占斌,张振文,等.两种预测模型在地下水动态中的比较与应用[J].生态学报,2012,32(21):6788-6794.
[14] 崔锦泰,程正兴.小波分析导论[M].西安:西安交通大学出版社,1995:2-24.
[15] Moosavi V,Vafakhah M,Shirmohammadi B,et al.A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods[J].Water resources Nanagement,2013,27(5):1301-1321.
[16] Maheswaran R,Khosa R.Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics[J].Computers & Geosciences,2013,52:422-436.
[17] Nourani V,Baghanam A H,Adamowski J,et al.Applications of hybrid wavelet Artificial Intelligence models in hydrology:a review[J].Journal of Hydrology,2014,514:358-377.
[18] 席海洋,冯起,程玉菲,等.黑河流域地下水研究进展综述[J].水文,2008,28(5):61-64.
[19] Vapnik V.The Nature of Statistical Learning Theory[M].New York,USA:Springer,1998.
[20] Chang C C,Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27.
[21] Goupillaud P,Grossmann A,Morlet J.Cycle-octave and related transforms in seismic signal analysis[J].Geoexploration,1984,23(1):85-102.
[22] 武选民,史生胜,黎志恒,等.西北黑河下游额济纳盆地地下水系统研究(上)[J].水文地质工程地质,2001,1:16-20.
[23] Bowden G J,Dandy G C,Maier H R.Input determination for neural network models in water resource applications.Part 1-Background and methodology[J].Journal of Hydrology,2004,301(1/4):75-92.
[24] Lin G F,Chen G R,Mu M C,et al.Effective forecasting of hourly typhoon rainfall using support vector machines[J].Water Resource Research,2009,45:1-11.