img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

基于Ts-NDVI特征空间的绿洲土壤水分监测算法改进

  • 王娇 ,
  • 丁建丽 ,
  • 袁泽 ,
  • 陈文倩 ,
  • 李相 ,
  • 黄帅
展开
  • 新疆大学 资源与环境科学学院/绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
王娇(1990-),女,湖北孝感人,硕士研究生,主要从事干旱区资源环境及遥感应用研究。E-mail:wangjiao_ygddd@qq.com

收稿日期: 2015-08-25

  修回日期: 2015-10-16

  网络出版日期: 2016-11-20

基金资助

科技支疆项目(201591101);新疆维吾尔自治区重点实验室课题(2016D03001);国家自然科学基金项目(U1303381,41261090,41161063);教育部长江学者和创新团队发展计划(IRT1180);新疆研究生科研创新项目(XJGRI2014022)

Improvement and Comparison of Soil moisture Monitoring Algorithm in Oasis Based on Ts-NDVI Feature Space

  • Wang Jiao ,
  • Ding Jianli ,
  • Yuan Ze ,
  • Chen Wenqian ,
  • Li Xiang ,
  • Huang Shuai
Expand
  • School of Resources and Environment;Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi 830046, China

Received date: 2015-08-25

  Revised date: 2015-10-16

  Online published: 2016-11-20

摘要

土壤水分胁迫是干旱区绿洲生态环境和可持续发展面临的主要问题,开展区域尺度下大面积、高精度的土壤水分监测,有利于该地区旱情预报、作物估产、气象水文等领域研究。以Ts-NDVI特征空间为理论基础,以新疆渭干河-库车河三角洲绿洲为研究靶区,选择典型干湿季节下Landsat 8遥感影像,在传统温度-植被干旱指数(TVDI)算法基础上,考虑大尺度研究区下垫面异质性(植被覆被、地形起伏)对辐射能量平衡的影响,分别采用植被水分指数(VWIs)、加入大气温度(Ta)和DEM校正后的地表温度(Ts)与NDVI相结合,构建了植被干旱指数(VDI)和改进型温度-植被干旱指数(iTVDI),并结合同期实测土壤水分数据对3种算法进行比较。结果表明:3种算法在一定程度上均能比较客观反映旱情特征,与表层土壤含水量呈现不同程度的负相关,其中,iTVDI相关性最好,TVDI次之,VDI相关性最低;相较植被生长初期而言,3种算法均在植被生长成熟期具有更好的水分监测能力。

关键词: NDVI; VDI; TVDI; iTVDI; 土壤水分

本文引用格式

王娇 , 丁建丽 , 袁泽 , 陈文倩 , 李相 , 黄帅 . 基于Ts-NDVI特征空间的绿洲土壤水分监测算法改进[J]. 中国沙漠, 2016 , 36(6) : 1606 -1612 . DOI: 10.7522/j.issn.1000-694X.2015.00165

Abstract

This study aims at developing appropriate methods for soil water stress detection in arid regions in Ugan-Kuqa River Delta Oasis by the images of Landsat 8. To do this, we use NDVI combined with Vegetation Water Index (VWIs) and surface temperature (Ts) to construct Vegetation Dryness Index (VDI) and Temperature Vegetation Drought Index (TVDI) respectively. At the same time, a modified approach towards the TVDI incorporating air temperature (Ta) and a DEM to develop the improved Temperature Vegetation Drought Index (iTVDI), which taking into account the impact of topography and cover types. The three algorithms were applied to retrieve the spatial and temporal distribution of water stress. Then, the same period field surface soil moisture data were used for verification and evaluation. The results show that the three algorithms to some extent, all can objectively reflect the dryness characteristics and all have negative correlation of soil moisture. While iTVDI has best correlation, TVDI followed, VDI has minimum correlation. In addition, all R2 values in April were lower than values in August, it is concluded that compared with growing season, the three algorithms were more suitable for the grown season water stress/drought detection.

Key words: NDII; VDI; TVDI; iTVDI; soil moisture

参考文献

[1] 张喆,丁建丽,李鑫,等.TVDI用于干旱区农业旱情监测的适宜性[J].中国沙漠, 2015,35(1):220-227.
[2] Parinaz R B,Kenji O,Yo S.Comparative evaluation of the Vegetation Dryness Index (VDI),the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68:1-12.
[3] Carlson T.An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J].Sensors,2007,7:1612-1629.
[4] 李华朋,张树清,高自强,等.MODID植被指数监测农业干旱的适宜性评价[J].光谱学与光谱分析,2013,33(3):756-761.
[5] 李柏贞,周广胜.干旱指标研究进展[J].生态学报,2014,34(5):1043-1052.
[6] Rahimzadeh-Bajgiran P.Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran[J].Journal of Arid Environments,2008,72(6):1086-1096.
[7] Rahimzadeh-Bajgiran P.MODIS vegetation and water indices for drought assessment in sem-arid ecosystems of Iran[J].Journal of Agricultural Meteorology,2009,65(4):349-355.
[8] Gao B C.NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.
[9] Fensholt R,Sandholt I.Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment[J].Remote Sensing of Environment,2003,87(1):111-121.
[10] Hunt Jr,Rock B N.Detection of changes in leaf water content using near-and middle-infrared reflectances[J].Remote Sensing of Environment,1989,30(1):43-54.
[11] Watson K,Rowen L C,Offield T W.Application of thermal modeling in the geologic interpretation of IR images[J].Remote Sensing of Environment,1971,3:2017-2041.
[12] Idso S B,Jackson R D,Pinter P J,et al.Normalizing the stress-degree-day parameter for environmental variability[J].Agricultural Meteorology,1981,24(1):45-55.
[13] Jackson R D,Idso S B,Reginato R J,et al.Canopy temperature as a crop water-stress indicator[J].Water Resources Research,1981,17(4):1133-1138.
[14] Moran M S,Clarke T R,Inoue Y,et al.Estimating crop water deficitusing the relation between surface air temperature and spectral vegetation index[J].Remote Sensing of Environment,1994,49(3):246-263.
[15] Sandholt I,Rasmussen K,Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J].Remote Sensing of Environment,2002,79(3),213-224.
[16] Petropoulos G,Carlson T N,Wooster M J,et al.A review of T/WI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture[J].Progress in Physical Geography,2009,33(2):224-250.
[17] 余凡,李海涛,张承明,等.多源遥感数据与水文过程模型的土壤水分同化方法研究[J].红外与毫米波学报,2014,33(6):603-607.
[18] Maki M,Ishiahra M,Tamura M.Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data[J].Remote Sensing of Environment,2004,90(4):441-450.
[19] Hassan Q K,Bourque C P A,Meng F R,et al.A wetness index using terrain corrected surface temperature and NDVI derived from standard MODIS products:an evaluation of its use in a humid forest dominated region of eastern Canada[J].Sensors,2007,7(10):2028-2048.
[20] 刘立文,张吴平,段永红,等.TVDI模型的农业旱情时空变化遥感应用[J].生态学报,2014,34(13):3704-3711.
[21] 杨槐.从Landsat 8影像反演地表温度的劈窗算法研究[J].测绘地理信息,2014,39(4):73-77.
文章导航

/