img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型

  • 党晓宏 ,
  • 高永 ,
  • 蒙仲举 ,
  • 高君亮 ,
  • 王珊 ,
  • 包蕾 ,
  • 余新春 ,
  • 王祯仪 ,
  • 王则宇
展开
  • 1. 内蒙古农业大学 沙漠治理学院, 内蒙古 呼和浩特 010018;
    2. 内蒙古农业大学 中央与地方共建风沙物理重点实验室, 内蒙古 呼和浩特 010018;
    3. 内蒙古杭锦荒漠生态系统定位观测研究站, 内蒙古 鄂尔多斯 017400;
    4. 中国林业科学研究院 沙漠林业实验中心, 内蒙古 巴彦淖尔 015200;
    5. 通辽市城乡规划技术管理中心, 内蒙古 通辽 028000
党晓宏(1986-),男,陕西合阳人,博士,讲师,主要研究方向为荒漠化防治。E-mail:dangxiaohong1986@126.com

收稿日期: 2015-11-18

  修回日期: 2015-12-26

  网络出版日期: 2017-01-20

基金资助

国家林业局引进国外先进林业科学技术项目(2015-4-22);内蒙古自治区自然科学基金项目(2015MS301)

Biomass Allocation Patterns and Estimation Model of Five Desert Shrub Species in West Ordos Region

  • Dang Xiaohong ,
  • Gao Yong ,
  • Meng Zhongju ,
  • Gao Junliang ,
  • Wang Shan ,
  • Bao Lei ,
  • Yu Xinchun ,
  • Wang Zhenyi ,
  • Wang Zeyu
Expand
  • 1. Desert Science and Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China;
    2. Wind Erosion Key Laboratory of Central and Local Government, Inner Mongolia Agricultural University, Hohhot 010018, China;
    3. Inner Mongolia Hangjin Desert Ecological Position Research Station, Ordos 017400, Inner Mongolia, China;
    4. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, Inner Mongolia, China;
    5. Urban and Rural Planning Management Center in Tongliao City, Tongliao 028000, Inner Mongolia, China

Received date: 2015-11-18

  Revised date: 2015-12-26

  Online published: 2017-01-20

摘要

以西鄂尔多斯地区5种荒漠优势灌丛(沙冬青(Ammopiptanthus mogolicus)、四合木(Tetraena mongolica)、霸王(Zygophyllum xanthoxylum)、红砂(Reaumuria songarica)、半日花(Helianthemum songaricum))为研究对象,采用平均标准灌丛全部收获法测定灌丛各营养器官(枝条、叶片、根系)生物量,并分别以丛高(H)和冠幅(C)的复合因子(CH)及基径(D)和丛高(H)的复合因子(D2H)为自变量建立单株灌丛生物量预测模型。通过决定系数(R2)、估计值的标准误差(SEE)和F检验显著水平筛选出各灌丛种最佳生物量预测模型。结果表明:(1)5种荒漠灌丛单株总生物量干鲜比差异性显著(P<0.05),各营养器官间差异性也达到显著水平(P<0.05);灌丛根冠比种间差异显著(P<0.05),红砂(1.05)> 霸王(1.01)> 半日花(0.92)> 沙冬青(0.90)> 四合木(0.49);(2)根系和枝条是荒漠灌丛生物量的主要贡献者,其生物量占灌丛总生物量比例之和均在80%以上,根系生物量分配随根系径级的增加而增加;(3)5种荒漠优势灌丛单株灌丛生物量预测模型R2值均在0.85以上,且在0.05水平上显著,生物量模型预测精度较高。

本文引用格式

党晓宏 , 高永 , 蒙仲举 , 高君亮 , 王珊 , 包蕾 , 余新春 , 王祯仪 , 王则宇 . 西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型[J]. 中国沙漠, 2017 , 37(1) : 100 -108 . DOI: 10.7522/j.issn.1000-694X.2015.00201

Abstract

In this paper, the main desert shrub species: Ammopiptanthus mogolicus, Tetraena mongolica, Zygophyllum xanthoxylum, Reaumuria songarica, Helianthemum songaricum shrub were taken as the research objects in west Ordos region, Inner Mongolia autonomous region, China. The average standard shrub harvest method was used and each part (branch, leaves and roots) biomass of shrub was measured in field. Shrub height (H) combined respectively by crown area(C) as CH and diameter (D) as D2H was used as independent variable to establish the biomass model. The optimal models were selected according to the largest determination coefficient (R2), the smallest standard error of estimate (SEE) and significance level of F test. The results showed that the differences among the dry/fresh weight ratio of single shrub and the differences among parts of shrub reached a significant level (P<0.05).The differences among root-shoot ratio of five shrub species reached a significant level (P<0.05). The root-shoot ratio of five shrub species was respectively that Reaumuria songarica was 1.05, Zygophyllum xanthoxylum was 1.01, Helianthemum songaricum was 0.92, Ammopiptanthus mogolicus was 0.90, Tetraena mongolica was 0.49. The roots and branches were main contributors to total biomass of desert shrubs and the proportion of roots and branches biomass to total biomass reached above 80%.With the increase of root diameter class, the root biomass was increasing. The R2 value of single shrub biomass models were all more than 0.85 and reached a significant level (P<0.05). The prediction accuracy of five desert shrubs' biomass models were good. The important basic data was provided by this research results and theoretical basics for the response of shrub productivity, carbon storage and carbon cycle to global climate changes in desert area of western China.

参考文献

[1] Whitford W G.Ecology of Desert System[M].New York,USA:Acadenic Press,2002:68.
[2] Cramer W,Bondeau A,Woodward F I.Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models[J].Global Change Biology,2001,7(4):357-373.
[3] Burquez A,Martinez-Yrizar A,Nunez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74(10):1240-1247.
[4] Chapin Ⅲ F S,Matson P A,Mooney H A.Principles of Terrestrial Ecosystem Ecology[M].New York,USA:Springer Verlag,2002.
[5] 吴波,苏志珠,陈仲新.中国荒漠化潜在发生范围的修订[J].中国沙漠,2007,27(6):911-917.
[6] Bazzaz F A,Grace J.Plant Resource Allocation[M].New York,USA:Academic Press,1997.
[7] Shipley B,Meziane D.The balanced-growth hypothesis and the algometry of leaf and root biomass allocation[J].Functional Ecology,2002,16(3):26-331.
[8] Coupland R T.Natural Grasslands:Introduction and Western Hemisphere[M].New York,USA:Elsevier Science Publishers,1992.
[9] Litton C M,Raich J W,Ryan M G.Carbon allocation in forest ecosystems[J].Global Change Biology,2007,13(10):2089-2109.
[10] Fabbro T,Korner C.Altitudinal differences in flower traits and reproductive allocation,Flora-Morphology,Distribution[J].Functional Ecology of Plants,2004,199(1):70-81.
[11] 冯丽,张景光,张志山,等.腾格里沙漠人工固沙植被中油蒿的生长及生物量分配动态[J].植物生态学报,2009,33(6):1132-1139.
[12] 仇瑶,常顺利,张毓涛,等.天山地区六种灌木生物量的建模及其器官分配的适应性[J].生态学报,2015,35(23):7842-7851.
[13] 钟泽兵,周国英,杨路存,等.柴达木盆地几种荒漠灌丛植物生物量分配格局[J].中国沙漠,2014,34(4):1042-1048.
[14] 杨昊天,李新荣,刘立超,等.荒漠草地4种灌木生物量分配特征[J].中国沙漠,2013,33(5):1340-1348.
[15] 张海清,刘琪,陆佩玲,等.千烟洲试验站几种常见灌木生物量估测[J].林业调查规划,2005,30(5):43-49.
[16] 曾慧卿,刘琪璟,张海清,等.千烟洲灌木生物量模型研究[J].浙江林业科技,2006,26(1):13-17.
[17] 黄劲松,邸雪颖.帽儿山地区6种灌木地上生物量估算模型[J].东北林业大学学报,2001,39(5):54-57.
[18] 林伟,李俊生,郑博福,等.井冈山自然保护区12种常见灌木生物量的估测模型[J].武汉植物学研究,2010,28(6):725-729.
[19] 赵蓓,郭泉水,牛树奎,等.大岗山林区几种常见灌木生物量估算与分析[J].东北林业大学学报,2012,40(9):28-33.
[20] 刘兴良,郝晓东,杨东生,等.卧龙巴郎山川滇高山栎灌丛地上生物量及其模型[J].生态学杂志,2006,25(5):487-491.
[21] 董道瑞,李霞,万红梅,等.塔里木河下游柽柳灌丛地上生物量估测[J].西北植物学报,2012,32(2):384-390.
[22] 李钢铁,贾守义.旱生灌木生物量预测模型的研究[J].内蒙古林学院学报,1998,20(2):24-31.
[23] Haase R,Haase P.Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso,Brazil[J].Forest Ecology and Management,1995,73:29-35.
[24] Sah J P,Ross M S,Koptur S,et al.Estimating aboveground biomass of broadleaved woody plants in the understory of Florida keys pine forests[J].Forestry Ecology and Management,2004,203:319-329.
[25] 王庆锁.油蒿、中间锦鸡儿生物量估测模式[J].中国草地,1994,1:49-51.
[26] 刘速,刘晓云.琵琶柴地上生物量的估测模型[J].干旱区研究,1996,13(1):36-41.
[27] 张士才.柠条锦鸡儿人工灌丛地生物量预测模型的选择[J].中国沙漠,1989,9(4):52-61.
[28] 王文栋,白志强,阿里木·买买提,等.天山林区6种优势灌木林生物量比较及估测模型[J].生态学报,2016,36(9):2695-2704.
[29] 杨昊天,李新荣,王增如,等.腾格里沙漠东南缘4种灌木的生物量预测模型[J].中国沙漠,2013,33(6):1699-1704.
[30] 额尔敦格日乐.3S技术在西鄂尔多斯国家级自然保护区研究中的应用[D].呼和浩特:内蒙古师范大学,2007.
[31] 张贞明,韩天虎.几种高寒灌丛地上植物量的估测模型[J].草业科学,2008,25(1):10-13.
[32] 何列艳,亢新刚,范小莉,等.长白山区林下主要灌木生物量估算与分析[J].南京林业大学学报:自然科学版,2011,35(5):45-50.
[33] McConnaughay K D M,Coleman J S.Biomass allocation in plants:ontogeny or optimality?a test along three resource gradients[J].Ecology,1999,80:2581-2593.
[34] Schenk H J,Jackson R B.Rooting depths,lateral root spreads and below-ground/aboveground allometries of plants in water-limited ecosystems[J].Journal of Ecology,2002,90(3):480-494.
[35] 王蕾,张宏,哈斯,等.基于冠幅直径和植株高度的灌木地上生物量估测方法研究[J].北京师范大学学报:自然科学版,2004,40(5):700-703.
[36] Us J L,Mateu J.Allometric regression equations to determine aerial biomasses of Mediterranean shrubs[J].Plant Ecology,1997,132(1):59-69.
[37] 蔡哲,刘琪璟,欧阳球林.千烟洲试验区几种灌木生物量估算模型的研究[J].中南林学院学报,2006,26(3):15-18,23.
[38] Wilson J B.A review of evidence on the control of shoot:root ratio,in relation models[J].Annul of Botany,1988,61:433-449.
[39] 程远峰,国庆喜,李晓娜.东北天然次生林下木树种的生物量器官分配规律[J].生态学杂志,2010,29(11):2146-2154.
[40] 曾立雄,王鹏程,肖文发,等.三峡库区主要植被生物量与生产力分配特征[J].林业科学,2008,44(8):16-22.
[41] 樊后保,李燕燕,苏兵强,等.马尾松-阔叶树混交异龄林生物量与生产力分配格局[J].生态学报,2006,26(8):2463-2473.
[42] Jin Z,Qi Y C,Dong Y S.Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia,China[J].Journal of Forestry Research,2007,18(4):298-300.
[43] 金铭,李毅,王顺利,等.祁连山高山灌丛生物量及其分配特征[J].干旱区地理,2012,35(6):952-959.
[44] 刘瑞,靳虎甲,马全林,等.甘肃景电灌区不同栽植年限枸杞生物量分配特征[J].生态学杂志,2012,31(10):2493-2500.
[45] 王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):871-877.
[46] 牛存洋,阿拉木萨,宗芹,等.科尔沁沙地小叶锦鸡儿地上-地下生物量分配格局[J].生态学杂志,2013,32(8):1980-1986.
[47] 李刚,赵祥,刘碧荣.晋北4种灌木地上生物量模型的构建[J].林业资源管理,2014,1:71-76.
[48] 陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309.
[49] Paton D,Nunez J,Bao D,et al.Forage biomass of 22 shrub species from Monfrague Natural Park(SW Spain) a models[J].Journal of Arid Environments,2002,52(2):223-231.
文章导航

/