Studying the nutrient element contents and their variations of different organs of the plant living in extreme environments is very important to reveal the need of nutrient elements and the nutrient distributions of different organs for the plant, and it is also necessary to show the plant's adaptive and feedback capacities to extreme environments. Taking five different aged Populus euphratica forests (young, middle aged, near mature, mature and over-mature) in Lunnan town, Luntai county, Xinjiang as research subjects, the C, N ,P contents in leaves, breaches and roots of Populus euphratica were measured, and their stoichiometric characteristics were analyzed. The results indicated that: (1) there was a significant difference in the C and N contents of different organs, the contents of C and N were, breaches (464.70 g·kg-1)>leaves (443.35 g·kg-1)>roots (420.31 g·kg-1), leaves(13.56 g·kg-1)>breaches (4.00 g·kg-1)>roots (3.49 g·kg-1). There was no significant difference for P contents at different organs, which was roots (3.04 g·kg-1)>leaves (2.84 g·kg-1)>breaches (2.34 g·kg-1). Forest age had a significant effect on C contents of leaves, but a small influence on nutrient elements of different organs. (2) the difference among the stoichiometry of different organs was remarkable, the ratios of C:N, C:P and N:P were, roots (123.67)>breaches (117.86)>leaves (33.28), breaches (227.14)>leaves (178.49)>roots (154.23), leaves (5.29)>breaches (1.90)>roots (1.29). Forest age had a significant effect on the ratios of C:P and N:P of breaches, but a little effect on the ratios of stoichiometry of different organs. (3) The ratios of N:P of leaves was 5.29, which was much less than the threshold value, showing that the growth of Populus euphratica in this area was greatly influenced by total N.
[1] 程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
[2] Sterner R W,Elser J J.Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere[M].Princeton,USA:Princeton University Press,2002.
[3] 王振南,杨惠敏.植物碳氮磷生态化学计量对非生物因子的响应[J].草业科学,2013,30(6):927-934.
[4] McGroddy M E,Daufresne T,Hedin L O.Scaling of C:N:P stoichiometry in forests Worldwide:implications of terrestrial redifeld-type ratios[J].Ecology,2004,85(9):2390-2401.
[5] Agren G I.Stoichiometry and nutrition of plant growth in natural communities[J].Annual Review of Ecology,2008,39(1):153-170.
[6] An H,Shangguan Z P.Leaf stoichiometric trait and specific leaf area of dominant species in the secondary succession of the Loess Plateau[J].Ploish Journal of Ecology,2010,58(1):103-113.
[7] 牛得草,陈鸿洋,江世高,等.荒漠植物霸王(Zygophyllum xant hoxylun)不同大小叶片C、N、P化学计量特征[J].中国沙漠,2013,33(3):703-709.
[8] 闫道良,黄有军,金水虎,等.山核桃功能器官细根、叶和林地土壤C、N、P化学计量时间变异特征[J].水土保持学报,2013,27(5):255-259.
[9] 张珂,陈永乐,高艳红,等.阿拉善荒漠典型植物功能群氮、磷化学计量特征[J].中国沙漠,2014,34(5):1261-1267.
[10] 陶冶,张元明.古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征[J].应用生态学,2015,26(3):659-665.
[11] 周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报,2010,34(1):7-16.
[12] 徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J].植物生态学报,2010,34(1):29-38.
[13] 刘超,王洋,王楠,等.陆地生态系统植被氮磷化学计量研究进展[J].植物生态学报,2012,36(11):1205-1216.
[14] 邓浩俊,陈爱民,严思维,等.不同林龄新银合欢重吸收率及其C:N:P化学计量特征[J].应用与环境生物学报,2015,21(3):522-527.
[15] 崔宁洁,刘小兵,张丹桔,等.不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征[J].生态环境学报,2014,23(2):188-195.
[16] 来风兵,孙虎,张展赫,等.塔克拉玛干沙漠和田河西侧胡杨沙堆的形态特征及空间分布格局[J].中国沙漠,2015,35(2):284-293.
[17] 刘树宝,陈亚宁,李卫红,等.黑河下游不同林龄胡杨水分来源的D、18O同位素示踪[J].干旱区地理,2014,37(5):988-995.
[18] 陈亚宁,李卫红,陈亚鹏,等.塔里木河下游断流河道输水的生态响应与生态修复[J].干旱区研究,2006,23(4):521-530.
[19] 苏里坦,李玉生,艾尔肯\5艾比布拉,等.塔里木河下游河岸胡杨(Populus euphratica)林耗水过程模拟[J].中国沙漠,2015,35(2):380-384.
[20] 赵春彦,司建华,冯起,等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠,2014,34(3):718-724.
[21] 王仲礼,赵雪,刘林德,等.胡杨(Populus euphratica)和沙枣(Elaeagnus angustifolia)对荒漠环境的适应性比较[J].中国沙漠,2015,35(1):160-166.
[22] 王世绩,陈炳浩,李护群.胡杨林[M].北京:中国环境科学出版社,1995.
[23] 吴锡麟,叶功富,张尚炬,等.不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J].应用与环境生物学报,2011,17(5):645-650.
[24] 任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学,2012,23(3):581-586.
[25] 李从娟,雷加强,徐新文,等.塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J].生态学报,2013,33(18):5760-5767.
[26] 王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优势植物的C:N:P化学计量学特征[J].植物生态学报,2011,35(6):587-595.
[27] Elser J J,Fagan W F,Denno R F,et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408(6812):578-580.
[28] He J S,Wang L,Flynn D F B,et al.Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J].Oecologia,2008,155(2):301-310.
[29] 阎恩荣,王希华,郭明,等.浙江天童山常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J].植物生态学报,2010,34(1):48-57.
[30] Wright Ian J,Reich Peter B,Westoby Mark,et al.The worldwide leaf economics spectrum[J].Nature,2004,428(6985):821-827.
[31] Güsewell S,Freeman C.Enzyme activity during N- and P-limited decomposition of wetland plant litter[J].Bulletin of the Geobotanical Institute ETH Zurich,2003,69:95-106.
[32] 曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展[J].生态学报,2013,33(18):5484-5492.
[33] 周国新,王光军,李栎,等.杉木根、枝和叶的C、N、P 生态化学计量特征[J].湖南林业科技,2015,42(1):15-18.
[34] 刘万德,苏建荣,李帅锋,等.云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J].生态学报,2010,30(23):6581-6590.
[35] 王维奇,徐玲琳,曾从盛,等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J].生态学报,2011,31(23):7119-7124.
[36] 周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报,2010,34(1):7-16.